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PREFACE

This book is based on a course given at the Institut de Mathématiques de Jussieu
in 2004 and once more in 2005. It was conceived as a first specialized course in
algebraic geometry. A student with a basic knowledge in algebraic geometry, e.g.
a student having worked through the first three chapters of Hartshorne’s book
[45], should be able to follow the lectures without much trouble. Occasionally,
notions from other areas, e.g. singular cohomology, Hodge theory, abelian var-
ieties, K3 surfaces, were needed, which were then presented in a rather ad hoc
manner, tailor-made for the purposes of the course. With a few exceptions full
proofs are given. The exercises included in the text should help the reader to
gain a working knowledge of the subject.

What is this book about? Its principal character is the derived category of
coherent sheaves on a smooth projective variety. Derived categories of this type
have been known for many years. Although widely accepted as the right frame-
work for any kind of derived functors, e.g. cohomology groups, higher direct
images, etc., they were usually considered as rather formal objects without much
interesting internal structure. Contrary to the cohomology and the Chow ring of
a projective variety X, the derived category of coherent sheaves as an invariant
of X had not been investigated thoroughly. This has changed drastically over
the last ten years.

The origin of the theory as treated here however goes back to celebrated papers
by Mukai, more than twenty years ago. He constructed geometrically motivated
equivalences between derived categories of non-isomorphic varieties. Also, over
many years the Moscow school had constantly worked on the description of
coherent sheaves on homogenous varieties, e.g. the projective space, Grassman-
nians, etc. On the other hand, Kontsevich’s homological mirror symmetry has
revived the interest in these questions outside the small circle of experts. Roughly,
Kontsevich proposed to view mirror symmetry as an equivalence of the derived
category of coherent sheaves of certain projective varieties with the Fukaya cat-
egory associated to the symplectic geometry of the mirror variety. Although we
deliberately do not enter into the details of this relation, it is this point of view
that motivates and in some sense explains many of the central results as well as
open problems in this area.

The derived category turns out to be a very reasonable invariant. Due to
results of Bondal and Orlov one knows that it determines the variety whenever
the canonical bundle is either ample or anti-ample. If this was true without
any assumptions on the positivity of the canonical bundle, the theory would
be without much interest. However, there is a region in the classification of
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projective varieties where the derived category turns out to be less rigid without
getting completely out of hand. The most prominent example was observed by
Mukai in the very first paper on the subject. He showed that the Poincaré bundle
induces an equivalence between the derived category of an abelian variety A and
the derived category of its dual A (which in general is not isomorphic to A).
These results, to be discussed in detail in various chapters, naturally lead to
the question under which conditions two smooth projective varieties give rise to
equivalent derived categories. This is the central theme of this book.

One word on the choice of the material. Everything that did not have a dis-
tinctive geometric touch has been left out. In particular, questions related to
representation theory, e.g. of quivers, or to modules over (non-commutative)
rings, have not been touched upon. This choice is due to personal taste, lim-
itations by a one semester course and my own ignorance in some of these
areas.

We refrain from giving a lengthy introduction to the contents of every chapter.
A glance at the table of contents will give a first impression of which topics are
treated, and the remarks at the beginning of each chapter provide more details.
The reader familiar with the general yoga of derived categories and derived func-
tors may go directly to Chapter 4 or 5 and come back to some of the background
material collected in the first three chapters whenever needed.
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my colleagues at the IJM during this time. In particular, I wish to thank J. Le
Potier and R. Rouquier.

Many people have made comments on earlier versions of the book. I wish
to thank U. Gortz, M. Nieper-Wiflkirchen, K. Oguiso, D. Ploog, P. Stellari,
R. Thomas, and D. Ben-Zvi. I am most grateful to Bahoua Fu and Justin Sawon
who carefully worked through the book and sent me detailed lists of corrections,
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1

TRIANGULATED CATEGORIES

The reader familiar with the basic notions of abelian and derived categories may
only need to browse through this section or skip it altogether. It will be much
more interesting to come back to the specific results discussed here when, in
the later chapters, they are actually applied to geometrically concrete problems.
However, the reader not feeling completely at ease with the formal language of
category theory should work through this chapter in order to be well prepared
for everything that follows.

We hope that separating results from category theory from the other chapters
rather than blending them in later when used, will help readers to understand
which part of the theory is really geometrical and which is more formal.

On the other hand, this chapter is not meant as a thorough introduction to
the subject. We only present those parts of the theory that are relevant in our
context.

We will not worry about any kind of set theoretical issues and will always
assume we remain in a given universe (or, as put in [39, p.58], ‘that all the
required hygiene regulations are obeyed’).

1.1 Additive categories and functors

We suppose that the reader is familiar with the notion of a category and of a
functor between two categories. For the reader’s convenience we briefly recall a
few central notions. If not otherwise stated all functors are covariant.

Definition 1.1 Let A and B be two categories. A functor F : A—=B is full
if for any two objects A, B € A the induced map

F :Hom(A, B) —— Hom(F(A), F(B))

is surjective. The functor F is called faithful if this map s injective for all

A Be A

A morphism F —s F' between two functors F, F’ : A— B is given by morph-
isms 4 € Hom(F'(A), F'(A)) for any object A € A which are functorial in A,
ie. F'(f)opa =ppoF(f) for any f: A— B.

Definition 1.2 Two functors F, F' : A—B are isomorphic if there ezists a
morphism of functors ¢ : F—=F' such that for any object A € A the induced
morphism ¢4 : F(A)—=F'(A) is an isomorphism (in B).
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Equivalently, F and F' are isomorphic if there exist functor morphisms ¢ :
F—F" and v : F'—F with po) =id and ¢ o p = id.

Definition 1.3 A functor F : A—B is called an equivalence if there exists
a functor F~' : B—= A such that F o F~1 is isomorphic to idg and F~' o F is
isomorphic to id4. One calls F~1 an inverse or, sometimes, quasi-inverse of F.

Two categories A and B are called equivalent if there erists an equivalence
F:A—B.

Clearly, any equivalence is fully faithful. A partial converse is provided by

Proposition 1.4 Let F : A—=B be a fully faithful functor. Then F is an
equivalence if and only if every object B € B is isomorphic to an object of the
form F(A) for some A € A.

Proof In order to define the inverse functor F~!, one chooses for any B € B
an object Ap € A together with an isomorphism ¢p : F(Ap) == B. Then, let

Fl1:B—=A

be the functor that associates to any object B € B this distinguished object
Ap € A and for which F~! : Hom(Bj, By) —=Hom(F~!(By), F~1(By)) is given
by the composition of

Hom(By, By) ——= Hom(F(4p,). F(Ap,)), [+ @5l ofopn,
and the inverse of the bijection
F :Hom(Ap,,Ap,) — Hom(F(Ap,), F(Ag,)).
The isomorphisms F o F~! ~ idg and F~! o F ~ id4 are the ones that are
naturally induced by the isomorphisms ¢p. a

The proposition immediately yields the

Corollary 1.5 Any fully faithful functor F : A—B defines an equivalence
between A and the full subcategory of B of all objects B € B isomorphic to F(A)
for some A € A. ]

In the following proposition we let Fun(A) be the category of all contravariant
functors, i.e. the objects are functors F' : A°°? — Set and the morphisms are
functor morphisms. Consider the natural functor

A —— Fun(A), A +—— Hom( ,A)

Proposition 1.6 (Yoneda lemma) This functor A—=Fun(A) defines an
equivalence of A with the full subcategory of representable functors F, i.e. func-
tors isomorphic to some Hom( ,A). In particular, AkHom( ,A) is fully
faithful.
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Proof See [39, IL.3]. O

We will rarely work with completely arbitrary categories. All our categories
will at least be additive.

Definition 1.7 A category A is an additive category if for every two objects
A, B € A the set Hom(A, B) is endowed with the structure of an abelian group
such that the following three conditions are satisfied:

i) The compositions Hom(A;, As) x Hom(Asg, A3) —Hom (A1, A3) written as
(f,9)—>go f are bilinear.

ii) There exists a zero object 0 € A, i.e. an object 0 such that Hom(0,0) is
the trivial group with one element.

iii) For any two objects A1, Ay € A there exists an object B € A with morph-
isms j; : A;—=B and p; : B—=A;, 1 = 1,2, which make B the direct sum and
the direct product of A1 and As.

We tacitly assume the usual compatibilities p; o j; =id, pa 0 j1 =p1 0j2 =0,
and j1 o p1 + j2 o p2 = id, which hold automatically up to automorphisms of B.

Exercise 1.8 Show that for any object A € A in an additive category A there
exist unique morphisms 0 —= A and A —0. The existence of such an object 0
in a category A is of course equivalent to ii).

A functor F' : A—B between additive categories A and B will usually be
assumed to be additive, i.e. the induced maps Hom(A, B) —Hom(F(A), F(B))
are group homomorphisms.

Everything that has been said so far carries over to additive categories. In
particular, an additive functor F' : 4 — B which is an equivalence is in fact
an additive equivalence, i.e. the inverse functor F~' is additive as well. The
Yoneda lemma is modified as follows: For an additive category A we let Fun(.A)
be the category of contravariant additive(!) functors F' : A— Ab, where Ab
is the category of abelian groups. Then the Yoneda lemma in the form of
Proposition 1.6 remains valid.

We will go one step further. As the categories we will eventually be interested
in have geometric origin, i.e. are defined in terms of certain varieties over some
base field, we usually deal with the following special type of additive categories.
In the following we denote by k an arbitrary field.

Definition 1.9 A k-linear category is an additive category A such that the
groups Hom(A, B) are k-vector spaces and such that all compositions are
k-bilinear.

Additive functors between two k-linear additive categories over a common base
field k will be assumed to be k-linear, i.e. for any two objects A, B € A the map
F : Hom(A, B) —Hom(F (A), F(B)) is k-linear.

Once again, everything that has been mentioned before carries over literally
to additive categories over a field. Usually we will state all abstract results for
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additive categories, but in the applications everything will be over a base field.
In principle, though, it could happen that two k-linear categories are equivalent
as ordinary additive categories without being equivalent as k-linear categories.

The Yoneda lemma can again be adjusted to the situation: this time, one
considers the category of contravariant k-linear functors from A into the category
Vec(k) of k-vector spaces.

Definition 1.10 An additive category A is called abelian if also the following
condition holds true:

iv) Every morphism f € Hom(A, B) admits a kernel and a cokernel and the
natural map Coim(f) —=Im(f) is an isomorphism.

Recall that the image Im(f) is a kernel for a cokernel B— Coker(f) and the
coimage Coim(f) is a cokernel for a kernel Ker(f)— A. So, condition iv) says
that for any f : A— B there exists the following diagram

Ker(f) ! A d B — Coker(f).

AN 7

Coker(i) = Ker(m)

In particular, the notion of exact sequences is usually only considered for
abelian categories. We recall that a sequence

f1 fa
Al E—— A2 E—— A3

is called ezact if and only if Ker(f3) = Im(f1).

Examples 1.11 i) Let R be a commutative ring. Then the category Mod(R)
of R-modules is abelian. The full subcategory of finitely generated modules is
abelian as well.

ii) Let X be a topological space. Then the category of sheaves of abelian
groups Sh(X) is abelian. If a sheaf of commutative rings on X is fixed, then the
subcategory of sheaves of modules over this sheaf of rings is again abelian.

ili) Let X be a scheme. Then the categories Coh(X) and Qcoh(X) of all
coherent respectively quasi-coherent sheaves on X are both abelian.

Suppose F' : A—B is an additive functor between abelian categories. In
particular, any sequence

f1 f2
A1 E—— Ag E—— A3

with fo 0o fi =0 (or, in other words, Im(f;) C Ker(f2)) is mapped to

F(f1) F(f2)
F(A)) ——= F(4y) —— F(A3)

again with F(f2) o F((f1) = F(f20 f1) =0.
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Definition 1.12  The functor F is left (right) exact if any short exzact sequence

f1 f2
0 Aq As As 0

18 mapped to a sequence

F(f1) F(f2)

0 — F(A1) — F(A2) —— F(43) —= 0

which is exact except possibly in F(As) (respectively in F(Ay)). The functor is
exact if it is left and right exact.

Exercise 1.13 Show that a functor F' is left exact if and only if any exact
sequence 0 —= A; — As — A3 (no surjectivity on the right!) induces an exact
sequence 0 — F(A;) — F(A2) — F(4s3).

Examples 1.14 i) Let A be an abelian category and Ay € A. Then
Hom(4y, ): A —— Ab
is a left exact functor. The contravariant functor

Hom( ,4p): A ——= Ab

is also left exact. (Left exactness of a contravariant functor F' : A — Ab means
by definition left exactness of the covariant functor F' : A°® — Ab.)

ii) Recall that an object P € A is called projective if Hom(P, ) is right exact
(and hence exact). An object I € A is called injective if Hom( ,I) is right exact
(and hence exact).

iii) Free modules over a ring R are projective objects in Mod(R). But (locally)
free sheaves in Coh(X) are almost never projective.

Definition 1.15 Let F : A—=B be a functor between arbitrary categories.
A functor H : B— A is right adjoint to F' (one writes F' 4 H ) if there exist
isomorphisms
Hom(F(A), B) ~ Hom(A, H(B)) (1.1)

for any two objects A € A and B € B which are functorial in A and B.

A functor G : B— A is left adjoint to F' (one writes G 4 F) if there exist
isomorphisms Hom(B, F(A)) = Hom(G(B), A) for any two objects A € A and
B € B which are functorial in A and B.

Clearly, H is right adjoint to F' if and only if F' is left adjoint to H.

Remarks 1.16 i) Suppose F' 4 H. Then idp(4) € Hom(F(A), F(A)) induces
a morphism A — H(F(A)). The naturality of isomorphisms in the definition of
the adjoint functor ensures that these morphisms define a functor morphism

h:idgy — HoF.
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In the same vein, inserting A = H(B) in (1.1) yields a canonical morphism
F(H(B))— B and, therefore, a functor morphism

g:FoH —— idg.

ii) Using the Yoneda lemma 1.6, one verifies that a left (or right) adjoint
functor, if it exists at all, is unique up to isomorphism. More explicitly, for two
right adjoint functors H and H’ of F one defines an isomorphism H ~ H’
which for any B € B is given as the image of the identity under the functorial
isomorphism Hom(H (B), H(B)) ~ Hom(F(H(B)), B) ~ Hom(H (B), H'(B)).

iii) If F' is an additive functor (in particular, A and B are additive), then one
requires the isomorphisms (1.1) to be isomorphisms of abelian groups. Similar, if
everything is k-linear, then also these isomorphisms are required to be k-linear.
A priori, one cannot exclude the pathological case of an adjoint functor that is
not additive, although the functor itself is. This can only occur if the isomorphism
in (1.1) is not a group homomorphism.

iv) If A and B are abelian categories and F : A—B is left adjoint to H :
B— A, then F is right exact and H is left exact. Note that even when F' is
left and right exact, its right adjoint is in general only left exact.

Exercise 1.17 Suppose F' 4 H. Show that

ha H(f)
f i (A == H(F(4) — H(B))
describes the adjunction morphism Hom(F(A), B) = Hom(A, H(B)).
Exercise 1.18 Prove assertion iv) above.

Exercise 1.19 Suppose FF 4 H. Show that for the induced morphisms
g: FoH—id and h :id— H o F' the composition

huc) H(g)

H (HoF)oH=Ho(FoH) —— H

is the identity. See [72, IV.1] and [39, IL.3] for a converse.

Examples 1.20 Let f : X—Y be a morphism between two noetherian
schemes X and Y. Then the pull-back functor

f*: Qecoh(Y) —— Qcoh(X)
is right exact and taking the direct image
f+ : Qcoh(X) —— Qcoh(Y)

is left exact. Moreover, f* - f,. If f is proper, the same holds for the categories
of coherent sheaves on X and Y.
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Lemma 1.21 Let F : A—=B be a functor and G 4 F. Then the induced
functor morphism g : G o F—=id 4 induces for any A,B € A the following

commutative diagram
\

Hom(G(F(A)), B) Hom(F(A), F(B)).

Hom(A, B)

°ga

Here, the isomorphism is given by adjunction.
Similarly, if F 4 H then the natural functor morphism h : idy—=H o F
induces for all A, B € A the following commutative diagram:

hpo

x l 2
Hom(F(A), F(B)).

Again, the isomorphism is given by adjunction.

Proof As G - F, the following diagram commutes for all f : A— B and all
CeB:

Hom(G(C), A) —— Hom(C, F(A))
foi o iw
Hom(G(C), B) —= Hom(C, F(B)).
Applied to C' = F(A) it yields
Hom(G(F(A)), A) —— Hom(F(A), F(A))
Fooe
Hom(G(F(A)), B) ——> Hom(F(A), F(B)).

Clearly, the vertical homomorphism on the right sends idp(4y to F'(f). On the
other hand, its image under

Hom(F'(A),F(A)) ~ Hom(G(F(A)),A) —— Hom(G(F(A)), B)

is just foga.
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This proves the commutativity of the lower triangle. The commutativity of
the upper one is proved similarly. O

Corollary 1.22 Suppose a fully faithful functor F : A—=B admits a left
adjoint G - F. Then the natural functor morphism

g:GoF o id A
is an isomorphism.
Similarly, if a fully faithful functor F : A— B admits a right adjoint F' <4 H,
then the natural functor morphism
hiidy —> HoF
is an isomorphism.
Proof Since F' : Hom(A, B)—Hom(F(A), F(B)) is bijective, the commut-
ativity of the diagram above proves that G o F'—id 4 induces bijections
Hom(A, B) s Hom((G o F)(A), B)
for all A and B. By the Yoneda lemma 1.6, this shows that G o FF'—id 4 is an
isomorphism. The proof of the second statement is similar. O
The same arguments also show the converse:

Corollary 1.23 Let F : A—B and G : B— A be two functors such that
G 4 F. If the induced functor morphism G o F'—=id 4 is an isomorphism, then
F s fully faithful.

Similarly, if ' 4 H such that id 4 —= H o F' is an isomorphism, then F is fully
faithful. O

Remark 1.24 In short, if F' 4 H, then:

Fis fully faithful <= h:id4q —> HoF

and if G 4 F, then:

F is fully faithful <— g¢g:GoF = id 4.

Exercise 1.25 Suppose G 1 F' - H and F fully faithful. Construct a canonical
homomorphism H —G.

In many cases, adjoint functors exist. The case that interests us most is the
case of equivalences. Here, the existence of left and right adjoints is granted by
the following general result.
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Proposition 1.26 Let F' : A—=B be an equivalence of categories. Then F
admits a left adjoint and a right adjoint. More precisely, if F' : B—=A is an
inverse functor of F then F 4 F' 4 F.

Proof Very roughly, this is due to the following sequence of functorial
isomorphisms

Hom(F(A), B) ~ Hom(F'(F(A)), F'(B)) ~ Hom(A, F'(B)),
where we use F'(F(A)) ~ A. Details are left to the diligent reader. a

Remark 1.27 These results justify the approach that is usually followed when
proving the equivalence of certain categories: Suppose F is a functor that is
hoped to be an equivalence and that admits a left adjoint G 4 F (or right
adjoint F' 4 H). Then one checks whether the adjunction morphism G o F —id
(respectively id— H o F') is bijective. If so, the functor F' is fully faithful.
Eventually, one has to ensure that any object in the target category is isomorphic
to an object in the image of F.

Definition 1.28 Let A be a k-linear category. A Serre functor is a k-linear
equivalence S : A—= A such that for any two objects A, B € A there exists an
isomorphism

na.p : Hom(A, B) — Hom(B, S(A))*

(of k-vector spaces) which is functorial in A and B.

We write the induced pairing as
Hom(B, S(A)) x Hom(A,B) —— k , (f,9) —— (flg)-

Remark 1.29 In the original paper by Bondal and Kapranov [13] an additional
condition was required, namely that for any two objects A, B € A the following
diagram commutes:

NA,B

Hom(A, B) Hom(B, S(A))*

S O S*

7MS(A),S(B)

Hom(S(A), S(B)) —— > Hom(S(B), S2(A))*.

It turns out that this is automatically satisfied.! Indeed, inserting the additional
diagonal arrow 1y g4 Hom(S(A), S(B)) —Hom(B, S(A))* induced by the

I Thanks to Raphael Rouquier for explaining this to me.
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defining property of a Serre functor, one reduces to the commutativity of the two
triangles. More precisely, what we denote by n} S(A) is in fact the composition

of Hom(S(A), S(B)) —Hom(S(A), S(B))** with the actual N5,s(4)- Thus one

has to show that

s Hom(B, S(A))*

is commutative or, equivalently, that for f € Hom(B, S(A4)) and g € Hom(A, B)
one has (f|g) = (S(g)|f). Since 7 is functorial in the second variable, we have
the commutative diagram

Hom

Hom(S(A)

MNA,B
Hom(A, B) Hom(B, S(A))*
°g o (8(g)o )"
n5,5

Hom(B,B) ——— > Hom(B, S(B))*.

Applied to id € Hom(B, B) it yields (f|g) = ((S(g) o f)]id). We next claim that
((S(g)o f)lid) = (S(g)|f), which can be seen by commutativity of the analogous
diagram (which uses functoriality of 7 in the first variable)

nB,B

Hom(B, B) Hom(B, S(B))*

fo O ( of)"

NB,S(A)

Hom(B, S(A)) —— Hom(S(A), S(B))*.

In order to avoid any trouble with the dual, one usually assumes that all Hom’s
in A are finite-dimensional. Under this hypothesis it is easy to see that a Serre
functor, if it exists, is unique up to isomorphism. More generally one has the
following

Lemma 1.30 Let A and B be k-linear categories over a field k with finite-
dimensional Hom’s. If A and B are endowed with a Serre functor S 4, respectively
Sg, then any k-linear equivalence

F:A——B
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commutes with Serre duality, i.e. there exists an isomorphism
Fo S_A ~ SB oF.

Proof This is an application of the Yoneda lemma 1.6: since F' is fully faithful,
one has for any two objects A, B € A

Hom(A, S(B)) ~ Hom(F(A), F(S(B))) and Hom(B, A) ~ Hom(F(B), F(A)).
Together with the two isomorphisms
Hom(A4, S(B)) ~ Hom(B, A)* and Hom(F(B), F(A)) ~ Hom(F(A),S(F(B)))",
this yields a functorial (in A and B) isomorphism
Hom(F(4), F(S(B))) ~ Hom(F(A), S(F(B))).

Using the hypothesis that F' is an equivalence and, in particular, that any object
in B is isomorphic to some F(A), one concludes that there exists a functor
isomorphism F o Sy ~ Sgo F. O

Remark 1.31 Let F': A— B be a functor between k-linear categories 4 and
B endowed with Serre functors S 4, respectively Sg. Then

GAF =F -S4 0GoSg"

(As before we assume that all Hom’s are finite-dimensional.)
Indeed, under the given assumptions we have the following functorial
isomorphisms:

Hom(A1, (Sa0GoSg")(Az2)) ~ Hom((G o Sz')(As2), Ar)*
~ Hom(Sg" (A2), F(A1))*

~ Hom(F(A1), Sp(S5" (42)))
~ Hom(F(4;), Asz).

A similar argument allows the construction of a left adjoint if a right adjoint
F 4 H is given. In particular, for functors between categories with Serre functors
the existence of the left or the right adjoint implies the existence of the other one.

(4
(4

1.2 Triangulated categories and exact functors

Triangulated categories, the kind of categories we will be interested in through-
out, were introduced independently and around the same time by Puppe [99] and
in Verdier’s thesis [118] under the supervision of Grothendieck. We recommend
[39, 61, 88] for a more in-depth reading.

Let us start right away with the definition of a triangulated category.

Definition 1.32 Let D be an additive category. The structure of a triangulated
category on D is given by an additive equivalence

T:D — D,
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the shift functor, and a set of distinguished triangles

A B C T(A)
subject to the axioms TR1-TR4 below.

Before actually explaining the axioms TR, let us introduce the notation A[1] :=
T(A) for any object A € D and f[1] := T(f) € Hom(A[1], B[1]) for any morphism
f € Hom(A, B). Similarly, one writes A[n] := T"(A) and f[n] := T"(f) for
n € Z. Thus, a triangle will also be denoted by A— B —C — AJl].

A morphism between two triangles is given by a commutative diagram

A B C A[1]
1o e
Al B c’ A'[1]

It is an isomorphism if f, g, and h are isomorphisms.
Here are the axioms for a triangulated category:

TR1 i) Any triangle of the form

id
A A 0 A1)

is distinguished.
ii) Any triangle isomorphic to a distinguished triangle is distinguished.
iii) Any morphism f : A— B can be completed to a distinguished triangle

f
A B C All].

TR2 The triangle

A B C All]

is a distinguished triangle if and only if

B c Afl] B[1]

is a distinguished triangle.
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TR3 Suppose there exists a commutative diagram of distinguished triangles with
vertical arrows f and g:

A B C All]
f i g i h l fl1]
\
Al B’ c’ A'[1]

Then the diagram can be completed to a commutative diagram, i.e. to a
morphism of triangles, by a (not necessarily unique) morphism h : ¢ —C".

TRA4 This is the axiom that is most complicated to state (and to print). It is
called the octahedron axiom. As it is never used explicitly in this book (and
implicitly only once, namely in the proof of Orlov’s theorem 5.14), we refrain
from including it here and refer to the literature for the precise formulation.
(In fact, this axiom is missing in Puppe’s definition, so that he deals rather with
pre-triangulated categories.)

To give the reader nevertheless an impression of what this axiom is about,
recall that for nested inclusions, of say abelian groups, A C B C C, there
exists a canonical isomorphism C/B ~ (C'/A)/(B/A). If one replaces the short
exact sequences A—>B—>B/A, A—C—C/A, and B—C—C/B by
distinguished triangles in a triangulated category, then TR4 roughly requires
BJ/A—=C/A—=C/B to be distinguished as well (cf. [61, Ch.1.4]).2

The first two axioms TR1 and TR2 seem very natural. Essentially, they are
saying that the set of distinguished triangles is preserved under shift and iso-
morphisms and that there are enough distinguished triangles available. The third
one, TR3, seems a little less so, due to the non-uniqueness of the completing
morphism.

Note, a priori we have not required that in a triangle A— B —C — A[1]
the composition A—C' is zero. But this can be easily deduced by combining
TR1 and TRS3.

Exercise 1.33 Prove the last statement.

Proposition 1.34 Let A—=B—C— A[l] be a distinguished triangle in
a triangulated category D. Then for any object Ay € D the following induced
sequences are exact:

Hom(Ag, A) — Hom(Ay, B) — Hom(Ay, )

Hom(C, Ag) —— Hom(B, Ag) — Hom(A4, Ap).

2 Thanks for D. Ben-Zvi for this interpretation.
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Proof Suppose f : Ag—= B composed with B— (' is the trivial morphism
Ag—> B—=C. Then apply TR1 and TR3 to

A A 0
S

\

A B C,

which allows us to lift f to a morphism Ag— A.
The proof for the second assertion is similar. o

Remark 1.35 Due to TR2, Hom(A4g, B) —Hom(Ag, C') —Hom(Ay, A[1]) is
exact as well and similarly for Hom( , Ap). Thus, one obtains in fact long exact
sequences.

Exercise 1.36 Suppose A—=B—(C—A[l] is a distinguished triangle.
Show that A— B is an isomorphism if and only if C ~ 0.

Exercise 1.37 Consider a morphism of distinguished triangles

A B C A1)
T A P
Al B’ C’ A'[1].

Show that if two of the vertical morphisms f, g, and h are isomorphisms then
so is the third. Also note that f and g might be zero without A being so.

Exercise 1.38 Let A— B—C — A[1] be a distinguished triangle in a tri-
angulated category D. Suppose that C' — A[1] is trivial. Show that then the
triangle is split, i.e. is given by a direct sum decomposition B ~ A & C.

Definition 1.39 An additive functor
F:D——7

between triangulated categories D and D' is called exact if the following two
conditions are satisfied:

i) There exists a functor isomorphism

FoTp — Tp oF.

i) Any distinguished triangle

A B C A1)
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i D is mapped to a distinguished triangle
F(A) —— F(B) —— F(C) ——= F(A)[1]
in D', where F(A[l]) is identified with F(A)[1] via the functor isomorphism in i).

Remark 1.40 Once again, the notions of a triangulated category and of an
exact functor have to be adjusted when one is interested in additive categories
over a field k. In this case, the shift functor should be k-linear and one usually
considers only k-linear exact functors.

Also note that in this case the two long exact cohomology sequences in Pro-
position 1.34 associated to a distinguished triangle are long exact sequences of
k-vector spaces.

Compare the following proposition with Remark 1.16, iv).

Proposition 1.41 Let F' : D—=1D' be an exact functor between triangulated
categories. If F 4 H, then H : D' —1D is ezact.
Similarly, if G 4 F then G : D' —=D is exact. See [13, 92].

Proof Let us first show that the adjoint functor H commutes with the shift
functors T' and T on D, respectively D’. Since F is an exact functor, one has
isomorphisms FoT ~T' o F and FoT ' ~T' ' o F.
This yields the following functorial isomorphisms
Hom(A, H(T'(B))) ~ Hom(F(A),T'(B)) ~ Hom(T'il(F(A)),B)
~ Hom(F(T~'(A)), B) ~ Hom(T~'(A), H(B))
~ Hom(A, T(H(B))).

As everything is functorial, the Yoneda lemma yields an isomorphism

)
)

HoT —> ToH.

Next, we have to show that H maps a distinguished triangle in D’ to a distin-
guished triangle in D. Let A— B —C — A[1] be a distinguished triangle in
D’. The induced morphism H(A)— H(B) can be completed to a distinguished
triangle

H(A) — > H(B) ——> Cy —— H(A)[1].

Here we tacitly use H(A[1]) ~ H(A)[1] given by the above isomorphism H o7’ ~
ToH.

Using the adjunction morphisms F(H(A)) — A and F'(H(B)) — B and the
assumption that F is exact, one obtains a commutative diagram of distinguished
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triangles

| L

F(H(A)) — F(H(B)) — F(Co) — F(H(A))[1]
A B c Alt],

which can be completed by the dotted arrow according to axiom TR3.
Applying H to the whole diagram and using the adjunction h : id—= H o F,
yields

H(A) H(B) Co H(A)[]

T e

 HFHA —— HFHB — HFC, —— HFHA[]

lH(é) l
3\ A\

H(A) H(B) H(C) — H(A)1].

Here, the curved vertical arrows are in both cases the identity morphisms (see
Exercise 1.19). To conclude one would like to apply Exercise 1.37, but we are
not allowed to use that H(A)— H(B)— H(C)— H(A)[1] is distinguished.
But using adjunction we know that for any Ag the sequence

Hom(Ay, H(B)) —— Hom(Ag, H(C)) —— Hom(Ay, H(A)[1])
~ Hom(F(4y), B) ~ Hom(F'(4y),C) ~ Hom(F (Ayp), A[1])

is exact. Then we obtain Hom(Ag, Cy) ~ Hom(Ag, H(C)) for all Ay and hence
H(&)ohg, : Co—H(C). Thus, H(A)— H(B)— H(C)—H(A)[1] is iso-
morphic to the distinguished triangle H(A)— H(B)—Co— H(A)[1], so it
is itself distinguished by TRI. |

A subcategory D' C D of a triangulated category is a triangulated subcategory
if D’ admits the structure of a triangulated category such that the inclusion is
exact. If D’ C D is a full subcategory, then it is a triangulated subcategory if and
only if D’ is invariant under the shift functor and for any distinguished triangle
A—B—C—A[l] in D with A, B € D’ the object C is isomorphic to an
object in D'.

Definition 1.42 A full triangulated subcategory D' C D is called admiss-
ible if the inclusion has a right adjoint w : D—=1D’, i.e. there exist functorial
isomorphisms Homp (A, B) ~ Homp: (A, 7(B)) for all A€ D' and B € D.

The orthogonal complement of a(n admissible) subcategory D' C D is the full

subcategory D' of all objects C € D such that Hom(B,C) =0 for all B€D'.
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More accurately, the orthogonal complement as defined above should be called
the right orthogonal complement. One similarly defines the left orthogonal com-
plement, but this will never be used. So, orthogonal in this book will always
mean right orthogonal.

Remarks 1.43 i) The right adjoint functor 7 : D — D’ for an admissible full
triangulated subcategory D’ C D is exact by Proposition 1.41.

ii) The orthogonal complement of an admissible subcategory is a triangulated
subcategory.

Indeed, the condition Hom(B,C') = 0 for all B € D’ yields

Hom(B, C[i]) ~ Hom(B[—i],C) =0
for all B € D', as D’ is invariant under shift. Thus, if

Cl CQ Cg Cl [1]

is a distinguished triangle in D with C;,Cy € D’ L then the long exact sequence
obtained from applying Hom(B, ) shows that also C3 € D’ .

ili) More explicitly, one shows that a full triangulated subcategory D’ C D is
admissible if and only if for all A € D there exists a distinguished triangle

B A C BI[1]

with B € D’ and C € D'*. This goes as follows.

Suppose D’ is admissible. The adjunction property of 7 allows us to associate
to the identity in Homp (7w(A),7(A)) a morphism B := 7(A) — A which we
may complete to a distinguished triangle

B A c BI[1].

In order to see that indeed C' € D’J‘, one applies Hom(B’, ) and uses that for
all B e D’

Hom(B', B) ~ Hom(B',7(A)) ~ Hom(B’, A).

Conversely, if such a distinguished triangle is given for any A, then one defines
the functor 7 : D—=D’ by 7(A) = B. Now use Hom(B,C) = 0 for B € D’ and
C € D'* to show that B does not depend (up to isomorphism) on the choice of
the triangle. Similarly, one shows that 7 is well-defined for morphisms.

iv) Admissible subcategories occur whenever there is a fully faithful exact
functor F' : D' —D that admits a right adjoint. Indeed, in this case the functor
F defines an equivalence between D’ and an admissible subcategory of D.

Exercise 1.44 Let A € D be an object in a triangulated category D. Show
that

At = {B €D | Hom(A4, B[i]) = 0 for all i € Z}
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is a triangulated subcategory. If (A) denotes the smallest triangulated sub-
category containing A, then A1 ~ (A)+.

The notion of equivalence that will be important for us is the following.

Definition 1.45 Two triangulated categories D and D' are equivalent if there
exists an exact equivalence F: D—=D’.

If D is a triangulated category, the set Aut(D) of isomorphism classes of
equivalences F' : D—="D forms the group of autoequivalences of D.

We conclude this section by a discussion of Serre functors in the context of
triangulated categories. As it turns out, Serre functors and triangulated struc-
tures are always compatible. In the geometric situation considered later, this will
be obvious, for the Serre functors there will by construction be exact. (So, the
reader mainly interested in geometry may safely skip the not so easy proof of
the following proposition.)

Proposition 1.46 (Bondal, Kapranov) Any Serre functor on a triangulated
category over a field k is exact. See [15].

Proof For simplicity we shall assume that all Hom’s are finite-dimensional.
By Lemma 1.30, a Serre functor S commutes with the shift functor 7. It

f ¢ h
remains to show that under S a distinguished triangle A— B —C — A[1] is
mapped to a distinguished triangle. In a first step, one completes S(A) — S(B)
to a distinguished triangle

S(f) @ P
A) —— S(B) Cy S(A)[1].

Next, one tries to construct a commutative diagram

S(A) S(B) Co S(A)[1]
s Y S(h)
S(A) S(B) S(C) —— S(A[1]).

The compatible long exact sequences, induced by applying Hom(D, ) to the hori-
zontal sequences, and the Yoneda lemma would then show that £ : Cp —= S(C)
must be an isomorphism (see Exercise 1.37). (Note that the long sequence
induced by the bottom sequence is dual to the long exact sequence induced
by applying Hom( , D) to the distinguished triangle A— B — C — A[1] and
hence itself exact.)
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It remains to prove the existence of £. Via Serre duality £ can be considered
as a linear form (¢| ) on Hom(C, Cy). The two conditions & needs to satisfy are
expressed as

i) £op=5S(g) and ii) S(h)o& =1.

Clearly, i) holds if and only if (€ o p|a) = (S(g)|«a) for any a € Hom(C, S(B)).
By functoriality of the Serre functor (£ o p|a) = (€] o «). Similarly, (S(g)|a) =
(alg) = (idp|e o g), where the first equality is taken from Remark 1.29. Hence,
condition i) is equivalent to

i') (&lpo )= (idg| og) € Hom(C,S(B))*.

The condition ii) can be equivalently written as (S(h)o&|5) = (¥|5) for any
B € Hom(A[l],Cp). Again using functoriality and Remark 1.29, (S(h)o&|B) =

(S(h)|§of) = (Eofilh) = (£]Boh) and (4]B) = (ida[tof). Hence, ii) is

equivalent to
i) (€] oh) = {idaltpo ) e Hom(A[l],Co)"

Thus, in order to ensure the existence of the desired £ or, equivalently, of
the linear form (£| ) : Hom(C, Cy) —k, it suffices to show that for any o €
Hom(C, S(B)) and any € Hom(A[1],Cp) one has

If poa=pFoh, then (idglaog) = (ida|y o).

Firstly, TR3 shows that there exists a commutative diagram

g h —fh —ql1]
B C Af1] B[1] Cl1]
WJ a g 1] of1]
~S(f) o " Voo s
S(A) —— S(B) Co S(A)[1] ——— S(B)[1]

But then, using functoriality of the Serre pairing Hom( , B) ~ Hom(B, S( ))*,
one obtains

(idglarog) = —(idp|S(f) 0 7) = =(S(F)v) = =(v11)-
Similarly, one finds
(idaly o B) = —=(ida,y[1] o f1]) = =(v[1], f1]) = =(41F)
and hence (idg|a o g) = (ida|y o 3). a

1.3 Equivalences of triangulated categories

In this section we discuss criteria that allow us to decide whether a given exact
functor is fully faithful or even an equivalence. This continues the discussion of
Remark 1.27 in the context of triangulated categories.
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Let us begin with the definition of a spanning class. In many geometric
situations, spanning classes (sometimes even several ones) are given naturally
(cf. Proposition 3.17 or Corollary 3.19).

Definition 1.47 A collection Q0 of objects in a triangulated category D is a
spanning class of D (or spans D) if for all B € D the following two conditions
hold:

i) If Hom(A, B[i]) = 0 for all A € 2 and all i € Z, then B ~ 0.
ii) If Hom(BJi],A) =0 for all A € Q and all i € Z, then B ~ 0.

Exercise 1.48 Suppose the triangulated category D is endowed with a Serre
functor. Show that the two conditions i) and ii) in the definition are equivalent.
So, in the presence of a Serre functor it suffices to require one of the two.

Proposition 1.49 Let F : D—=D’ be an ezact functor between triangulated
categories with left and right adjoints: G 4 F 4 H.

Suppose Q is a spanning class of D such that for all objects A, B € Q and all
1 € Z the natural homomorphisms

F : Hom(A4, B[i]) — Hom(F(A), F(B[i]))

are bijective. Then F is fully faithful. See [18, 92].

Proof First recall that H and G are both exact due to Proposition 1.41. This
will be used throughout.
We shall use the following commutative diagram (see Lemma 1.21):

hpo

Hom(A, B) ——~~ Hom(A, H(F(B))) (1.2)

Hom(G(F(A)), B) — Hom(F(A), F(B))

for arbitrary A, B € D.
We first show that for any A € Q the homomorphism g4 : G(F(A)) — A is
an isomorphism. In order to see this, choose a distinguished triangle

G(F(A) —= 4 c G(F(A)[A].
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Applying Hom( , B) for an arbitrary B € D induces a long exact sequence which
combined with the commutative lower triangle yields

°ga

Hom(C, B[i]) —— Hom(A, B[i]) —— Hom(G(F'(A)), B[i]) ——

T )

Hom(F(A), F(B)[i]).

If B € Q, then F : Hom(A, B[i]) —Hom(F(A), F(B)[i]) is bijective by
assumption. Hence, Hom(C, B[i]) = 0 for all ¢ € Z and all B € Q. Since Q
spans D, one finds C' ~ 0 and, therefore, g4 : G(F(A)) == A.

Note that this immediately implies that for A € Q and any B € D in fact all
homomorphisms in (1.2) are bijections, in particular

hpo : Hom(A, B) = Hom(A, H(F(B))).

This applied to B € D and using a distinguished triangle of the form (again use
TRI1 for its existence)

B s H(F(B)) —> ¢ —— BIl]

shows that Hom(A, C[i]) = 0 for all i € Z and all A € Q. Hence, C' ~ 0 and,
thus, hp : B-—=> H(F(B)). In particular,

hpo : Hom(A, B) — Hom(A, H(F(B)))

for any A € D. Using the commutativity of the upper triangle in (1.2), this proves
that F' : Hom(A, B) =>Hom(F(A), F(B)) is bijective for all A,B € D, i.e. F
is fully faithful. (This last step in the proof was also stated as Corollary 1.23.)

O

Suppose we already know that the functor is fully faithful. What do we need
to know in order to be able to decide whether it is in fact an equivalence? The
following lemma provides a first criterion, whose assumption however is difficult
to check. Building upon the arguments used in its proof we shall, however, deduce
Proposition 1.54, which turns out to be extremely useful.

Lemma 1.50 Let F': D—=1D’ be a fully faithful exact functor between trian-
gulated categories and suppose that F has a right adjoint F' <4 H. Then F is an
equivalence if and only if for any C € D' the triviality of H(C), i.e. H(C) ~ 0,
implies C' ~ 0.

Proof By Corollary 1.22 one knows that for any A the adjunction morphism
ha: A— HF(A) is an isomorphism.
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In order to prove the assertion, one has to verify that also the adjunction
morphism gp : FH(B)— B is an isomorphism for any B € D’. Indeed, H
would be an inverse of F' in this case. Note that Corollary 1.22 does not apply,
because we don’t know whether H is fully faithful.

For any B € D’ the morphism gp : FH(B)— B can be completed to a
distinguished triangle

FH(B) B C FH(B)[1].
Since H is exact by Proposition 1.41, we obtain a distinguished triangle in D

H(gs)

HFH(B) H(B) H(C) HFH(B)[1].
Since by Exercise 1.19 one knows that H(gg) o hp(p) = idg (g and, therefore,
that H(gp) is an isomorphism, this shows H(C) ~ 0. Hence, by assumption

C ~ 0 which in turn shows that gp is an isomorphism. O

Exercise 1.51 State and prove the analogous statement for a left adjoint
functor G 4 F.

Definition 1.52 A triangulated category D is decomposed into triangulated
subcategories D1, Dy C D if the following three conditions are satisfied:

i) Both categories D1 and Ds contain objects non-isomorphic to 0.

i) For all A € D there exists a distinguished triangle

B A B, Bi[1]

with B; € D;, 1 =1, 2.
111) HOI’II(Bl, Bg) = HOIII(BQ7 Bl) =0 fO?” all By € D1 and By € Ds.

A triangulated category that cannot be decomposed is called indecomposable.

Later, we will see that the derived category of an integral scheme is inde-
composable (see Proposition 3.10).

Exercise 1.53 Show that condition ii) in the presence of iii) just says that A
is the direct sum of By and Bs. In particular, the definition is symmetric in D,
and Dy despite the chosen order in ii).

Proposition 1.54 Let ' : D—=D' be a fully faithful exact functor between
triangulated categories. Suppose that D contains objects not isomorphic to 0 and
that D' is indecomposable.

Then F' is an equivalence of categories if and only if F has a left adjoint G 4 F
and a right adjoint F 4 H such that for any object B € D’ one has: H(B) ~ 0
implies G(B) ~ 0. See [18].

Proof In order to prove the proposition, one introduces two full triangulated
subcategories D7, D, C D’. The first one, D}, is the image of F, i.e. the full
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subcategory of all objects B isomorphic to some F(A). Equivalently, D} is the
full subcategory of objects B € D’ with F(H(B)) ~ B (induced by adjunction).
Indeed, if B ~ F(A), then
H(B)~ H(F(A)) ~ A,
for F' is fully faithful. Thus,
B~ F(A) ~ F(H(B)).

The second category, D}, consists of all C' € D’ with H(C') ~ 0. Clearly, both
are triangulated subcategories of D’.

The arguments in the proof of the previous lemma show that any B € D’ can
be decomposed by a distinguished triangle

Bl B BQ B[l]

with B; € D).
Furthermore, for all B; € D} and By € D) we have

Hom(By, Bs) ~ Hom(F (H(B1)), B2) ~ Hom(H (B;), H(B3)) =0
and
Hom(Bs, B1) ~ Hom(Bs, F(H(B1)) ~ Hom(G(Bz), H(B1)) =0,

for H(B2) ~ 0 by assumption implies G(Bz) = 0.

Since D’ is indecomposable, either D} or D) is trivial, i.e. one of the two
contains only objects isomorphic to 0. Suppose D} is trivial. Then for any A € D,
the image F'(A) and hence H(F'(A)) is trivial. As F' is fully faithful, this proves
A~ H(F(A)) ~0 for all A, which contradicts the non-triviality of D.

Hence, D) must be trivial. This proves that D] C D’ is an equivalence, i.e. for
every object B € D' adjunction yields F(H(B)) ~ B. Thus, H is a quasi-inverse
of F. |

Remark 1.55 The proposition can be best applied when G = H. This parti-
cular case will in fact occur in the applications. So, if F' is fully faithful and
H - F 4 H then F is an equivalence whenever D’ is indecomposable.

The following is a combination of the two propositions in the presence of Serre
functors.

Corollary 1.56 Let F': D—=TD’ be an exact functor between triangulated cat-
egories D and D’ with left adjoint G < F and right adjoint F' - H. Furthermore
assume that € is a spanning class of D satisfying the following conditions:
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i) For all A, B € Q the natural morphisms
Hom(A, B[i]) — Hom(F'(A), F(B)[i])

are bijective for all i € Z.

i) The categories D and D' admit Serre functors Sp, respectively Sp: such that
for all A € Q one has F(Sp(A)) ~ Sp/(F(A)).

iii) The category D' is indecomposable and D is non-trivial.
Then F is an equivalence. See [22].

Proof The first condition ensures by Proposition 1.49 that F is fully faithful.
In order to apply Proposition 1.54, one has to verify the condition that H(B) ~ 0
implies G(B) ~ 0. This is done as follows.

Suppose H(B) =~ 0. Using adjunction and the compatibility of the Serre
functors with F', one finds for any A € Q:

0 = Hom(A, H(B)) ~ Hom(F(A), B) ~ Hom(B, Sp/(F(4)))*
~ Hom(B, F(Sp(A)))* ~ Hom(G(B), Sp(A))*
~ Hom(A, G(B)).

Hence, Hom(A,G(B)) = 0 for all A €  and, therefore, G(B) ~ 0. Note that
the argument actually shows G ~ H. O

Due to Remark 1.31, it suffices to assume the existence of only one of the
adjoint functors in the above corollary.

1.4 Exceptional sequences and orthogonal decompositions

In the geometric context, the derived categories in question will usually be
indecomposable (see Proposition 3.10). However, there are geometrically relevant
situations where one can decompose the derived category in a weaker sense. This
leads to the abstract notion of semi-orthogonal decompositions of a triangulated
category, the topic of this section. Any full exceptional sequence yields such a
semi-orthogonal decomposition, so we will discuss this notion first.

Definition 1.57 An object E € D in a k-linear triangulated category D is
called exceptional if

|k aif £=0
Hom(FE, E[{]) —{ 0 if (40,
An exceptional sequence is a sequence E1, ..., E, of exceptional objects such

that Hom(E;, E;[(]) =0 for all i > j and all £. In other words

|k if £=0,i=j
Hom(E:, B;{f]) = { 0 if i>jorif 140,i=j
An exceptional sequence is full if D is generated by {E;}, i.e. any full triangulated
subcategory containing all objects E; is equivalent to D (via the inclusion).
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Lemma 1.58 Let D be a k-linear triangulated category such that for any
A, B € D the vector space @, Hom(A, B[i]) is finite-dimensional.

If E € D is exceptional, then the objects @ E[i]%/t form an admissible
triangulated subcategory (E) of D.

Proof We leave it to the reader to check that (E) is indeed triangulated. In
order to see that it is admissible one considers for any object A € D the canonical
morphism

P Hom(E, Ali]) ® E[-i] — A,
which can be completed to a distinguished triangle
P Hom(E, Ali]) ® E[-i] —= A —— B.

Using that E is exceptional, one finds Hom(FE, B[i]) = 0. Hence, B € (E)* (cf.
iii) Remark 1.43). O

The concept of a (full) exceptional sequence is generalized by the following
Definition 1.59 A sequence of full admissible triangulated subcategories
Di,...,D, CD
is semi-orthogonal if for all i > j
D; C Di.

Such a sequence defines a semi-orthogonal decomposition of D if D is gener-
ated by the D;, i.e. via inclusion D is equivalent to the smallest full triangulated
subcategory of D containing all of them.

Examples 1.60 i) Let D’ C D be an admissible full triangulated subcategory
(cf. Definition 1.42). Then Dy := D’J‘7D2 := D' C D is a semi-orthogonal
decomposition of D.

ii) Let Ey,...,E, be an exceptional sequence in D. Then the admissible
triangulated subcategories (see Lemma 1.58)

D1 = <E1>7. .. ,Dn = <En>

form a semi-orthogonal sequence.
If the exceptional sequence is full, then Dyq,..., D, C D is a semi-orthogonal
decomposition.

Lemma 1.61 Any semi-orthogonal sequence of full admissible triangulated
subcategories Dy, ..., D, C D generates D, i.e. defines a semi-orthogonal decom-
position of D, if and only if any object A € D with A € Di- for alli=1,...,n
ts trivial.
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Proof Suppose Di,...,D,, C D is a semi-orthogonal decomposition. For any
Ag € D one defines the full triangulated subcategory +Ag of all objects A € D
with Hom(A, Ag[i]) = 0 for all i € Z (cf. Exercise 1.44).

If Ay € (D, then Dy,...,D,, C +Ag. Hence, L4y = D and, in particular,
Ay € L Ag. The latter yields Hom(Ag, Ag) = 0 and thus Ag ~ 0.

Let us now assume that (] D;- = {0}. For simplicity we assume n = 2 and leave
the general case to the reader. We have to show that any Ag € D is contained
in the triangulated subcategory generated by D; and Ds. Since Dy is admissible,
one finds a distinguished triangle

A Ao B Al

with A € Dy and B € Djy. The latter can be decomposed further by a
distinguished triangle

C B c’ C]

with C € D; and C’ € Di (use that D; is admissible).

As C € D; C Dy and B € Dy, one finds C' € Dy . Hence, C' € Di N D,
which implies ¢’ ~ 0 by assumption. Thus, B ~ C € D;. But then Ay sits
in a distinguished triangle with the other two objects being in Dy, respectively
D,. O

Exercise 1.62 Let D1,Ds C D be a semi-orthogonal decomposition of length
two. Show that the inclusion D; C Dj is an equivalence. More generally, if
Dy,...,D, C D is a semi-orthogonal decomposition, then D; C (Ds,...,D,)*
is an equivalence.

Exercise 1.63 Suppose D1,D; C D is a semi-orthogonal decomposition of a
triangulated category D. Show that any object A € D with Hom(A, B) = 0 for
all B € Dy is isomorphic to an object in Ds.
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DERIVED CATEGORIES: A QUICK TOUR

This chapter is meant as a reminder. Many arguments are only sketched, if at
all, and the reader not familiar with the material or feeling uncomfortable with
certain aspects of it should go back to the literature.

At the same time we encourage the reader familiar with the basic notions of
the theory to go as early as possible to Chapter 3 or even Chapter 4. Passing
quickly to the results by Bondal, Bridgeland, Orlov, et al. on derived categories
of coherent sheaves, the topic of this course, one gets to know derived categories
from a more geometric point of view and this might help to digest the formal
aspects of the general machinery.

2.1 Derived category of an abelian category

In this section we shall recall the fundamental aspects of derived categories.
We begin by stating the existence of the derived category as a theorem, and
explain the technical features, necessary for any calculation, later on. Derived
functors will only be discussed in Section 2.2.

In the sequel, we will mostly be interested in the derived category of the
abelian category of (coherent) sheaves or of modules over a ring. We recommend
the textbooks [39, 61, 70] for more details and other examples.

Remark 2.1 Often, an object in a given abelian category A is studied in terms
of its resolutions. To be more specific, recall that by definition a coherent sheaf
F on a scheme X can locally be given by finitely many generators and finitely
many relations. In other words, at least locally there exists an exact sequence
OF™ —=0F™ —=F —=0. On a smooth projective variety X any coherent
sheaf F admits a locally free resolution of length n = dim(X), i.e. there exists
an exact sequence of the form

0 En e & &o F 0

where all &; are locally free coherent sheaves. Thus, in order to study arbitrary
coherent sheaves on X one may switch to locally free sheaves and complexes of
those.

More generally, when working with an abelian category, it is often necessary
and natural to allow also complexes of objects in A. This leads to the notion of
the category of complexes.



28 Derived categories: a quick tour

Let us briefly recall the definition of the category of complexes Kom(A) of
an abelian category A. A complex in A consists of a diagram of objects and
morphisms in A of the form

dgi-1 a4 i+l
/= Al —— p —— fit]l —— ..

satisfying d* o d*~! = 0 or, equivalently, Im(d*~1) C Ker(d*), for all i € Z.
A morphism f : A®* — B® between two complexes A® and B*® is given by a
commutative diagram

di;t dy ditt
Ai—l A1 Ai—i—l
L fi—l f7 L fi+1
digt di ditt
— Bi—l Bi Bi-i—l

Definition 2.2 The category of complexes Kom(A) of an abelian category A
is the category whose objects are complexes A® in A and whose morphisms are
morphisms of complexes.

Proposition 2.3 The category of complexes Kom(A) of an abelian category is
again abelian.

Proof The proof is straightforward. E.g. the zero object in Kom(A) is the
complex ... —=0—=0—>=0— ... and the kernel of a morphism f : A®* — B*
is the complex of the kernels Ker(f?), i € Z. O

Also note that mapping an object A € A to the complex A® with A° = A and
A? =0 for i # 0 identifies A with a full subcategory of Kom(.A).

The complex category Kom(.A) has two more features: cohomology and shift.

Let us start out with the shift functor.

Definition 2.4 Let A* € Kom(A) be a given complex. Then A®[1] is the
complex with (A®[1])* := A*! and differential di4[1] = —dy.

The shift f[1] of a morphism of complezes f : A®*—= B® is the complex
morphism A®[1]—= B®[1] given by f[1]* := fi+L.

The following fact is easily verified.

Corollary 2.5 The shift functor T : Kom(A)—=Kom(A), A®+—= A*[1]
defines an equivalence of abelian categories. O

More precisely, the inverse functor T~! is given by A® = A®*[—1], where, more
generally, A®[k]" = A**? and Ay = (=1)kd'* for any k € Z.
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Note, however, that Kom(A) endowed with the shift functor T does not define
a triangulated category. Indeed, we would also have to give the class of distin-
guished triangles and the canonical choices, like short exact sequences or mapping
cones, do not work.

Exercise 2.6 Prove that short exact sequences 0 — A®* — B* —(C* —0,
which can be viewed as triangles with trivial C*— A®[1], do not, in gen-
eral, satisfy the conditions imposed on distinguished triangles in a triangulated
category.

Recall that the cohomology H'(A®) of a complex A® is the quotient

Hi(A®) = Ker(d?)

@) 4

i.e. H'(A®) = Coker(Im(d*~!) —Ker(d")). A complex A® is acyclic if H'(A®) =
0 for all ¢ € Z. Any complex morphism f : A®—= B® induces natural
homomorphisms

Hi(f): H(A®*) —— H'(B"*).

Exercise 2.7 Suppose F': A— B is an additive functor between abelian cat-
egories. Show that F' is exact if and only of the image F(A®) of any acyclic
complex A® in A is an acyclic complex in B.

Remark 2.8 Proposition 2.3 allows us to speak of short exact sequences in
Kom(A). One of the fundamental facts in homological algebra says that any
short exact sequence

0 A* B* c* 0

induces a long exact sequence
s Hi(AO) s Hi(B') . Hi(C") . HiJrl(A') I

See [39] or any standard textbook on homological algebra. The construction of
the boundary morphism H*(C®)—= Ht1(A®) is easier if one allows oneself to
work with modules over a ring. The case of length two complexes runs under the
name ‘snake lemma’.

The induced map for the cohomology objects is used to define quasi-
isomorphisms, which play a central role in the passage to the derived category.

Definition 2.9 A morphism of complexes f : A*—=B® is a quasi-
isomorphism (or qis, for short) if for all i € 7 the induced map H'(f) :
Hi(A®) —= H*(B®) is an isomorphism.
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Note that a resolution as considered in Remark 2.1 gives rise to a quasi-
isomorphism (En — ... —& —>50) — F. This explains why it is desirable
not to distinguish between quasi-isomorphic complexes.

The central idea for the definition of the derived category is this: quasi-
isomorphic complexes should become isomorphic objects in the derived category.
We shall begin our discussion with the following existence theorem. Details of
the construction are provided by the subsequent discussion.

Theorem 2.10 Let A be an abelian category and let Kom(A) be its category
of complexes. Then there exists a category D(A), the derived category of A, and
a functor

Q : Kom(A) — D(A)

such that:

i) If f : A*—B*® is a quasi-isomorphism, then Q(f) is an isomorphism in
D(A).

ii) Any functor F': Kom(A) —D satisfying property i) factorizes uniquely over

Q : Kom(A) —D(A), i.e. there ezists a unique functor (up to isomorphism)
G:D(A)—D with F ~GoQ:

Kom(A)

x JRe

D.

As stated, the theorem is a pure existence result. In order to be able to work
with the derived category, we have to understand which objects become iso-
morphic under @ : Kom(A) —D(A) and, more complicated, how to represent
morphisms in the derived category. Explaining this, will at the same time provide
a proof for the above theorem. Moreover, we shall observe the following facts.

Corollary 2.11 i) Under the functor Q : Kom(A) —=D(A) the objects of the
two categories Kom(A) and D(A) are identified .

ii) The cohomology objects H'(A®) of an object A* € D(A) are well-defined
objects of the abelian category A.

iii) Viewing any object in A as a complex concentrated in degree zero yields
an equivalence between A and the full subcategory of D(A) that consists of all
complexes A® with H'(A®) =0 for i # 0.

Contrary to the category of complexes Kom(.A), the derived category D(.A)
is in general not abelian, but it is always triangulated. The shift functor indeed
descends to D(A) and a natural class of distinguished triangles can be found, as
will be explained shortly.
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Suppose C*® — A® is a quasi-isomorphism. As the derived category is to be
constructed in a way that any quasi-isomorphism becomes an isomorphism, any
morphism of complexes C'* —= B® will have to count as a morphism A®* — B*®
in the derived category. This leads to the definition of morphisms in the derived
category as diagrams of the form

C.

P \

A® B,

where C'* — A® is a quasi-isomorphism.

In order to make this a sensible definition of morphisms, one has to explain
when two such roofs are considered equal and how to define the composition
in the derived category. The natural context for both problems is the homotopy
category of complexes. This will be an intermediate step in passing from Kom(.A)

to D(A):

Kom(A) D(A)

N

By abuse of notation, we shall again write @ : K(A) —D(A) for the natural
functor.

Definition 2.12 Two morphisms of complezes
f’ g: A® —— B*

are called homotopically equivalent, f ~ g, if there exists a collection of
homomorphisms h? : A —= B~ § € Z, such that

fi—g :hi+1odf4+dglohi.

The homotopy category of complexes K(A) is the category whose objects
are the objects of Kom(A), i.e. Ob(K(A)) = Ob(Kom(A)), and morphisms
HOHIK(A) (A.,B.) = HomKom(A) (A.,B.)/ ~.

That the definition makes sense, e.g. that the composition is well-defined in
K(A), follows from the following assertions which are all easily verified.

Proposition 2.13 i) Homotopy equivalence between morphisms A®* — B® of
complezxes is an equivalence relation.

ii) Homotopically trivial morphisms form an ‘ideal’ in the morphisms of
Kom(A).
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iii) If f ~ g: A*—=B®, then H'(f) = H'(g) for all i.

iv) If f : A*—=B*® and g : B*— A® are given such that f o g ~ idg and
gof ~ida, then f and g are quasi-isomorphisms and, more precisely, H'(f)™! =
H'(g). O

Remark 2.14 Note that the definition of K(.A) makes sense for any additive
category. This will be needed later when we consider the full subcategory of all
injective objects in a given abelian category (cf. Proposition 2.40).

Now comes the precise definition of the derived category. The first step is to
describe the objects of D(.A). This is easy, we simply set

Ob(D(A)) := Ob(K(A)) = Ob(Kom(A)).

The set of morphism Homp(4) between two complexes A® and B® viewed as
objects in D(A) is the set of all equivalence classes of diagrams of the form

C.
N\
A® B,

where C'®* — A® is a quasi-isomorphism. Two such diagrams are equivalent if
they are dominated in the homotopy category K(A)(!) by a third one of the
same sort, i.e. there exists a commutative diagram in K(.A) of the form

Looc
"N
- 1-\

C

y/ \\

A Be.

(In particular, the compositions C®*—C? —A* and C*—C3— A* are
homotopy equivalent. Thus, since the first one is a qis, also the latter one is.
Why commutativity is required only in K(A), i.e. up to homotopy, and not in
Kom(A) will become clear later (cf. proof of Proposition 2.16). Roughly, if the
stronger condition is imposed, the composition of two such roofs could no longer
be defined.)

In this way, we have defined objects and morphisms of our category D(.A), but
we still have to check a number of properties. In particular, we have to define



Derived category of an abelian category 33

the composition of two morphisms. If two morphisms

and cs

cr
N N
A B*

B* c*

are given, we want the composition of both be given by a commutative (in the
homotopy category K(A)!) diagram of the form

cs (2.1)

qis \ qis \

A* B* Cce.

There are two obvious problems: one has to ensure that such a diagram exists
and that it is unique up to equivalence.

Both things hold true, but we need to introduce the mapping cone in order to
explain why. The mapping cone will as well play a central role in the definition
of the triangulated structure on K(A) and D(A) (see Proposition 2.24).

Definition 2.15 Let f : A* — B*® be a complex morphism. Its mapping cone
is the complex C(f) with

C(f) = Ait! i i Ao
(f)f=A"" @B and dgy = ( R g ) .
B
(Note that in the literature one finds different conventions for the definition
of the differential dc(y), e.g. f*"! with an extra sign.)
The reader easily checks that the mapping cone is a complex. Moreover, there
exist two natural complex morphisms

7:B* ——= C(f) and 7:C(f) ——= A°*[1]

given by the natural injection B* — A*T'@® B’ and the natural projection A"+ @
Bi—= A°*[1]" = A", respectively. The composition B®*—=C(f)—= A°®[1] is
trivial and the composition A®* — B®*—C(f) is homotopic to the trivial
map. In fact, B®*—C(f)— A°®[1] is a short exact sequence of complexes. In
particular, we obtain the long exact cohomology sequence (cf. Remark 2.8)

Hi(A®) —= HY(B*) —= H(C(f)) —= ' (A%) —
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Also, by construction any commutative diagram can be completed as follows

At~ Bt —— () —— 411
e

P v
Ay " By s () —— Al

This probably reminds the reader of axiom TR3. The following proposition
should be viewed in light of axiom TR2. (In fact, the triangles defined by the
mapping cone will form the distinguished triangles in the homotopy and in
the derived category, cf. Proposition 2.24). It will also be crucial for defining
the composition of morphisms in the derived category.

Proposition 2.16 Let f : A* — B® be a morphism of complexes and let C(f)
be its mapping cone that comes with the two natural morphisms T : B* —C(f)
and 7 : C(f) — A®[1]. Then there exists a complex morphism g : A®[1]—=C(1)
which is an isomorphism in K(A) and such that the following diagram is
commutative in K(A):

B — e C(f) — s A1) — > B[]
R A
B ) Clr) — > B[],

Proof The morphism g : A*[1]—C(7) is easy to define: We let
Ao[l]i — Ai+1 R C(T) Bz+1 e C(f) Bz+1 ® Az-‘,—l o) Bz

be the map (—f%*1,id,0). We leave it to the reader to verify that this is indeed
a complex morphism.
The inverse g~ ! in K(.A) can be given as the projection onto the middle factor.
The commutativity (in Kom(.A)!) of the diagram

Al — Beq)

T

C(T) —_— B'[l]

is straightforward. (But note the annoying sign, which is in fact responsible for
the sign in TR2.)
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The diagram

Tr

C(f) — C(7)

does not commute in Kom(A), but it does commute up to homotopy. To prove
this, one first checks that g o g~ ! is indeed homotopic to the identity and then
uses g~ o7, = . For the details see [61, 1.4]. O

Let us first show how to use the construction of the mapping cone in order to
compose two morphisms in the derived category. In order to do this, we consider
a quasi-isomorphism f : A®* — B*® and an arbitrary morphism g : C'* — B°®.

Proposition 2.17 There exists a commutative diagram in K(A)

06 qis oo

L,

A* —— B°.
qis
Proof Note that the existence of a commutative diagram (even in the complex
category and even without A®* — B® being a gis) is trivial. The difficulty consists
in constructing it such that C§ —C"* is a qis.
The idea is to make use of a commutative diagram of the form

Crogl-1 cr c(f) C(r o)
A* B* C(f) A*[1].

Due to the previous proposition we know that B* —> C(f)—A°*[1]inK(A) is

isomorphic to the triangle B*® . C(f) —C(7). Then use the natural morphism

C(7 0 g) —C().
Using the long exact cohomology sequences, one proves that the morphism
C§ = C(71 0 g)[-1] —C" is a quasi-isomorphism. O

The proposition is central as its immediate consequence is

Corollary 2.18 The composition of roofs as proposed by (2.1) exists and is
well-defined.
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Proof Apply Proposition 2.17 to

o1

|

qis

n (2.1). We leave it to the reader to show that the equivalence class of the
appearing roof is unique. O

Exercise 2.19 One might be tempted to define C§ more directly as the fibred
sum of A® and C*® over B°. Find an example that shows that this in general

does not work. (E.g. try a surjection for B®* = B? s> B! with kernel A and
C* = B'[-1].)

Exercise 2.20 Show that a complex A® is isomorphic to 0 in D(A) if and
only if H*(A®) ~ 0 for all . On the other hand, find an example of a complex
morphism f : A®* — B® such that H*(f) = 0 for all 4, but without f being trivial
in D(A). See [39, 44].

In fact, f is zero in D(A) if and only if there exists a qis g : C* — A® such
that f o g is homotopically zero.

Exercise 2.21 Check that D(A) is an additive category.

Remark 2.22 Behind the construction of the derived category there is a gene-
ral procedure, called localization. Roughly, one constructs the localization of a
category with respect to a localizing class of morphisms. In our case, these are
the quasi-isomorphisms. It turns out that quasi-isomorphisms indeed form a
localizing class in K(A) (but not in Kom(.A)!). For details see [39, 61].

Definition 2.23 A triangle

A A3 A3 At(1]

in K(A) (respectively in D(A)) is called distinguished if it is isomorphic in K(A)
(respectively in D(A)) to a triangle of the form

T

f T
A* — B* — C(f) — A°[1]
with f a complex morphism.

Proposition 2.24 Distinguished triangles given as in Definition 2.23 and the
natural shift functor for complezes A®+—— A®[1] make the homotopy category of
complezes K(A) and the derived category D(A) of an abelian category into a
triangulated category.
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Moreover, the natural functor Q4 : K(A)—=D(A) is an exact functor of
triangulated categories.

Proof Again we refer to the literature, e.g. [39, IV.2]. As before, the mapping
cone plays a central role in the verification of the axioms TR. Note that there
is the additional difficulty in the derived category that an isomorphism of two
triangles is not given by honest morphisms. O

Exercise 2.25 Let A := Vecy(k) be the abelian category of finite-dimensional
vector spaces over a field k. Show that D(A) is equivalent to [, ,.A. More
precisely, any complex A®* € D(A) is isomorphic to its cohomology complex
@ Hi(A®)[—i] (with trivial differentials).

Exercise 2.26 Show more generally that the assertion in the last exercise holds
true, whenever the abelian category A is semi-simple, i.e. such that any short
exact sequence in A splits. See [39, 111.2.3].

Exercise 2.27 Suppose 0‘>A‘f>B —> (C' —=0 is a short exact sequence in
an abelian category A. Show that under the full embedding A < K(A) (or
A & D(A)) this becomes a distinguished triangle A— B—C — A[l] in
K(A) (respectively D(A)) with § given as the composition of the inverse (in
K(A) respectively D(A)) of the quasi-isomorphism C(f) —C and the natural
morphism C(f)— A[1].

Conversely, if A—= B —C — A[1] is a distinguished triangle with objects
A, B,C e A, then 0—= A—= B —(C —=0 is a short exact sequence in A.

Exercise 2.28 Suppose A®*—B®*—(C*— A°*[1] is a distinguished tri-
angle in the derived category D(A). Show that it naturally induces a long
exact sequence ... —>H'(A®*)—=H!(B®*)—H'(C*)—=HT}(A*)— ...
(cf. Remark 2.8).

By definition, complexes in the categories K(A) and D(A) are unbounded, but
often it is more convenient to work with bounded ones.

Definition 2.29 Let Kom*(A), with x = +,—, or b, be the category of
complezes A®* with A® =0 for i < 0, i > 0, respectively |i| > 0.

By dividing out first by homotopy equivalence and then by quasi-isomorphisms
one obtains the categories K*(A) and D*(A) with * = 4+, —, or b. Let us consider
the natural functors D*(A) —D(A) given by just forgetting the boundedness
condition.

Proposition 2.30 The natural functors D*(A) —=D(A), where x = +,—, or
b, define equivalences of D*(A) with the full triangulated subcategories of all
complezes A® € D(A) with H (A®) =0 for i < 0, i > 0, respectively |i| > 0.
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Proof The idea is the following (see Exercise 2.31). Suppose H*(A®) = 0 for
1 > ip. Then the commutative diagram

cee ——> pAio—2 Ato—1 Ker(df}f) 0
s Ai0—2 Aio—l Aio Ai0+1 - > ...

defines a quasi-isomorphism between a complex in K~ (A) and A°®.
Similarly, if H?(A®) = 0 for i < ig, one considers

> Aio—l Aio Ai0+1 [
0 Coker(do—1!) —— piotl —— ...

For details see [61]. Note that the statement is about the derived and not about
the homotopy category. Indeed, it should be clear from the two diagrams that
in order to replace a cohomologically bounded complex by a bounded complex
one needs to pass via a roof. m]

The same arguments prove iii) in Corollary 2.11 saying that A is canonically
equivalent to the full subcategory of all objects A®* € D(A) with H(A®) ~ 0 for
i # 0 (cf. [39, TIL5)).

Exercise 2.31 Let A® be a complex with H¢(A®) = 0 for i > m. Show that A®
is quasi-isomorphic (and hence isomorphic as an object in D(A)) to a complex
B* with B* = 0 for i > m.

State and prove an analogous statement for a complex A® with H(A®) = 0

for i < m.

Exercise 2.32 Let A® be a complex with m := max{i | H'(A®*) # 0} < ooc.
Show that there exists a morphism

o AY —— H™(A%)[-m]

in the derived category such that H™(p) : H™(A®*)— H™(A®) equals the
identity.

Similarly, if m := min{i | H(A®) # 0} > —oo, then there exists a morphism
©: H™(A®)[—m]—= A® with H™(p) = id.
Exercise 2.33 Suppose H'(A®) = 0 for i < ip. Show that there exists a
distinguished triangle

Hio(A®*)[—i)] A* B H(A®)[1 — i)
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in D(A) with H(B®) = 0 for i < iy and ¢ inducing isomorphisms H?(A®) ~
Hi(B®) for i > iy. State and prove the analogous result for a complex A® with
Hi(A%) =0 for i > 4.

Due to the very construction of the derived category, it is sometimes quite
cumbersome to do explicit calculations there. Often, however, it is possible to
work with a very special class of complexes for which morphisms in the derived
category and in the homotopy category are the same thing. Depending on the
kind of functors one is interested in, the notion of injective, respectively, project-
ive objects will be crucial. Both concepts were recalled in Examples 1.14. Note
that they are dual in the sense that an object I € A is injective if and only if the
same object considered as an object of the opposite category A°P is projective.

Definition 2.34 An abelian category A contains enough injective (respectively
enough projective) objects if for any object A € A there exists an injective morph-
ism A— T with I € A injective (respectively a surjective morphism P — A with
P € A projective).

An injective resolution of an object A € A is an exact sequence

0 A 10 It I?

with all I' € A injective. Similarly, a projective resolution of A consists of an
exact sequence

p2 p! P A 0

with projective objects P’ € A. In other words, an injective resolution is given
by a complex I*® and a quasi-isomorphism A —I* where I’ = 0 for i < 0 and
all I’ injective. A projective resolution can be explained similarly.

Clearly, if A contains enough injectives, any object A € A admits an injective
resolution. More generally one has

Proposition 2.35 Suppose A is an abelian category with enough injectives.
For any A®* € Kt (A) there exist a complex I®* € KT (A) with I* € A injective
objects and a quasi-isomorphism A®* —1°.

Proof As A® is a bounded below complex, we can proceed by induction as
follows. Suppose we have constructed a morphism

fi:A.H(...Ii_l It 0 o)

such that H7(f;) is bijective for j < i and injective for j = i. As the notation
suggests, the objects I/ are injective. Then one constructs a complex morphism

fi-i—l A —— (...Ii_l It Jitl 0 )
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which now induces bijective maps H7(f;41) for j < i and an injective map
H™*(fir).

We only indicate the first step. For the complete proof see [39, IIL.5] or
[61, 1.1.1.7]. Suppose A® is of the form 0—= A" —=Al —=A%2 - . By
assumption, there exists an injective object I° and a monomorphism A° —I°.
The induced morphism fo : A®*—=(I°—=0—...) has the property that
H'(fo) is an isomorphism for i < 0 and injective for i = 0.

The definition of I' and the morphism I° —=I"! is easy: Consider the object
(I ® A')/A° and choose an injective object I' containing it. The morphisms
I° —T' and A'—1I" are the obvious ones. The cohomological properties are
readily verified.

(The same idea works in principle also for the definition of I't! as
an injective object containing (I® @ A**!)/A% but one has in addition to
ensure that I'~! —=J?—=TI**t! be zero, which makes the general case more
technical.) O

Corollary 2.36 Suppose A is an abelian category with enough injectives. Any
A® € D(A) with H'(A®) =0 for i < 0 is isomorphic (as an object of the derived
category) to a complex I® of injective objects I' with I* =0 for i < 0.

Proof By Proposition 2.30 we may assume that A’ = 0 for i < 0. Then use
the proposition. O

Exercise 2.37 Spell out the dual statements for a category with enough
projectives.

Lemma 2.38 Suppose A®* —= B® is a quasi-isomorphism between two com-
plexes A®, B* € KT (A). Then for any complex I® of injective objects I' with
It =0 for i < 0 the induced map

Homg () (B*, I*) —— Homga)(A®, I*)
is bijective.
Proof Completing B®* — A® to a distinguished triangle in the homotopy cat-
egory K¥(A) and using the long exact Hom( ,I*®)-sequence reduces the claim
to the assertion that Homy(4)(C*®,1*) = 0 for any acyclic complex C*, i.e. a
complex quasi-isomorphic to 0 (cf. Exercise 2.20).

A homotopy between any complex morphism g : C®—=1°* and the zero
map can be explicitly constructed by standard algebraic homology methods,
see [57, 1.6].

The principal idea is the following: The desired homotopy (h® : C* —=T°"1)
is constructed by induction. If the h? have already been given for j < i, then
consider ¢g' — d% ' o hi : C' —=I*, which factorizes over C*/C*~! —TI’. Due to
the injectivity of I', this lifts to a morphism h**' : C**1 —1T’, in other words
gt —di oh' =hTody,. al
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Lemma 2.39 Let A* I* € Kom™ (A) such that all I' are injective. Then
HomK(A) (A., I.) = HOHID(A) (A., I.).

Proof Clearly, there is a natural map Homg4)(A®, I*) —Homp4)(A*,I°)
and we have to show that for any morphism

B.
AN
A* I°

in D(A) there exists a unique morphism of complexes A®* —T* making the
diagram commutative up to homotopy.

In other words, one has to show that for any quasi-isomorphism B® — A® in
Kom™(A) the induced map Homg4)(A®, I*) —Homg4)(B*,I*) is bijective.
This is Lemma 2.38. O

In the following proposition we consider the full additive subcategory Z C A
of all injectives of an abelian category A. As for an abelian category, K*(Z) can
be defined (cf. Remark 2.14) and is again triangulated.

The composition of the inclusion Z C A with the natural exact functor @ 4 :
K*(A) —D*(A) yields the natural exact functor ¢ : K*(Z) —D*(A).

Proposition 2.40 Suppose that A contains enough injectives, i.e. any object
in A can be embedded into an injective one. Then the natural functor

t: KT (Z) ——= DT (A)

s an equivalence.

Proof Let us first check that the functor K¥(Z) —=D™(A), even without the
hypothesis, is fully faithful. We have to verify two things. Firstly, if a complex
morphism f : I* —=J*® of complexes of injectives I, .J7 is zero in D(A) then f
is homotopic to zero. Secondly, any morphism in D(.A) can be completed to a
commutative diagram in K(A)

b \

Both assertions follow from the two lemmas preceding the proposition. (So, it
is the injectivity of J*® that matters for both parts.) Note that there is a sub-
tlety here, as the complex C*® might a priori only be cohomologically bounded
below, but of course for A®* bounded below the qis C* —= A® factorizes over
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(0—C%/Im(d"" ') —C*! — ..)—A* for i < 0. (Implicitly, the same
problem appeared in the proof of Proposition 2.30.)

In order to see that the given functor is not only fully faithful but indeed
essentially surjective one applies Proposition 2.35. O

In the course of the proof we have indeed used the assumption that all com-
plexes are bounded below. For the analogous statement replacing injective by
projective, one would have to work in D~ (A) for the same reason.

Remark 2.41 Eventually, we will be interested in the bounded derived cat-
egory of coherent sheaves DP(Coh(X)). However, there are reasons that will
oblige us to work with bigger abelian categories and/or with unbounded derived
categories. We add a few more comments about how this comes about.

As in the process of deriving functors one has to work with injective resolutions
and those are almost never bounded, derived functors are often defined in the
bigger categories of unbounded (or only partially bounded) complexes. Only a
posteriori are they then restricted to the smaller categories.

It is not only that we would like to stay in the bounded derived category, but
also have to work with unbounded complexes, we also have to leave the abelian
category Coh(X) we are primarily interested in and work in the bigger ones
Qcoh(X) or even Sh(X). The reason is essentially the same: we want to replace
coherent sheaves by their injective resolutions, but there are almost no coherent
injective sheaves. We will come back to this question, but the reader might
keep in mind for the following discussion the inclusions of abelian categories
Coh(X) C Qcoh(X) C Sh(X).

The general context can be set as follows. Consider a full abelian subcategory
A C B of an abelian category B. Then there are two derived categories D(.A)
and D(B) with an obvious exact functor D(A) —D(B) between them.

One might wonder whether this functor defines an equivalence between D(.A)
and the full subcategory of D(B) containing those complexes whose cohomology
is in A. This does not hold, as in general D(A)—=D(B) is neither full nor
faithful. Fortunately, in the geometric situation, e.g. passing from DP(Sh(X))
to DP(Qcoh(X)), things are better behaved, as shown by the next proposition.
Recall that a thick subcategory A of an abelian category B is a full abelian
subcategory such that any extension in B of objects in A is again in A.

Proposition 2.42 Let A C B be a thick subcategory and suppose that any
A € A can be embedded in an object A" € A which is injective as an object of B.
Then the natural functor D(A) —D(B) induces an equivalence

D*(A) — D(B)
of D*(A) and the full triangulated subcategory D} (B) C DT (B) of complezes

with cohomology in A.
Analogously, one has D*(A) ~ D5 (B).
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Proof The assumption that A is a thick subcategory is clearly necessary in
order to ensure that D:Z(B) is a triangulated subcategory.

The idea of the proof is to replace any complex bounded below in B with
cohomology in A by an injective resolution contained in A. For the proof we
refer to the literature [39, 61]. This is very similar to Proposition 2.35. O

Exercise 2.43 Prove that under the assumption of the proposition D;(B) is
indeed a full triangulated subcategory of D¥(B).

2.2 Derived functors

Let F' : A— B be an additive functor between abelian categories. If F' is not
exact, the image of an acyclic complex in A, i.e. one that becomes trivial in D(.A),
is not, in general, acyclic (see Exercise 2.7). Thus, the naive extension of F to
a functor between the derived categories D(A) —=D(B) does not make sense,
except when F is an exact functor. It is straightforward to verify the following
slightly more general lemma. The equivalence of the two conditions uses the cone
construction.

Lemma 2.44 Let F : K*(A)—K*(B) be an ezact functor of triangulated
categories. Then F naturally induces a commutative diagram

K*(A) — K*(B)

|

D*(A) — D*(B)
if one of the following two conditions holds true.

i) Under F a quasi-isomorphism is mapped to a quasi-isomorphism.
ii) The image of an acyclic complex is again acyclic. O

(Note that in the lemma the functor need not come from a functor between
the abelian categories.) If the functor F : A—=B is not exact (or if F :
K*(A) —K*(B) does not satisfy i) or ii)), a more complicated construction
is needed in order to induce a natural functor between the derived categories.
The new functor, called the derived functor, will not produce a commutative
diagram as in Lemma 2.44, but it has the advantage to encode more information
even when applied to an object in the abelian category. Roughly, it explains why
the original functor fails to be exact.

In order to ensure existence of the derived functor, we will always have
to assume some kind of exactness. For a left exact functor F' : A—=B (see
Definition 1.12) one constructs the right derived functor

RF : D*(A) —> D*(B)
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and for a right exact functor F' : A— B one constructs the left derived functor
LF:D (A) —— D~ (B).

Both constructions are completely analogous and we shall discuss only RF'. In the
applications, however, there is a difference in that Qcoh(X) for a smooth project-
ive variety (in fact, for any noetherian scheme) always contains enough injectives,
but never enough projectives (well, except if X is a collection of points).

Before explaining the general construction, we provide a list of most of the
left, respectively right exact functors that will be used in the geometric context.
We will come back to this list in Section 3.3. In this section only the abstract
machinery is described.

Examples 2.45 i) Let X be a topological space. Then the global section
functor

I'(X, ):Sh(X) — Ab

is a left exact functor. Similarly, for a scheme X it defines left exact functors
I'(X, ):Qcoh(X)—Ab and I'(X, ): Coh(X)— Ab. If X is a projective
variety over a field k, then this becomes the left exact functor

I'(X, ): Coh(X) —— Vecy(k)

into the category of finite-dimensional vector spaces (see [45, II, 5.19]).

ii) Let f : X —Y be a continuous map. Then the direct image functor f, :
Sh(X)—=Sh(Y) is left exact. Similarly, if f : X —Y is a morphism of schemes,
then

f« : Qcoh(X) —— Qcoh(Y)

is left exact. If f : X —Y is a proper morphism of noetherian schemes, then
the direct image defines a left exact functor (see [45, III, 8.8])

fx : Coh(X) —— Coh(Y).

This in particular applies to any morphism of projective varieties.

Note that in general, (Y, )o f. = I'(X, ) and f. = I'(X, ) if f is the
projection onto a point.

ili) Suppose X is a scheme and F € Qcoh(X). Then

Hom(F, ):Qcoh(X) ——= Ab

is left exact. For a coherent sheaf F on a projective variety X over a field k£ one
has the left exact functor

Hom(F, ):Coh(X) —— Vecy(k).
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iv) Consider, as before, a quasi-coherent sheaf F on a scheme X. Then the
sheaf of homomorphisms from F defines a left exact functor

Hom(F, ):Qcoh(X) —— Qcoh(X).

If F is coherent, then Hom(F, ) takes coherent sheaves to coherent ones. Also
note that I' o Hom(F, )= Hom(F, ).

We leave it to the reader to write down the analogous statements for the
contravariant functors Hom( ,F) and Hom( ,F).

v) Let X be a topological space endowed with a sheaf of commutative rings R.
Consider the abelian category of sheaves of R-modules Shg (X). If 7 € Shg (X),
then

F@r () :Shg(X) —> Shg(X)

is a right exact functor.
vi) Let f : X —Y be a continuous map. Then the inverse image defines an
exact functor

f71:Sh(Y) — Sh(X) and f~!:Shg(Y) — Sh; 1x(X),

where R is any sheaf of rings on Y.
If f: X—Y is a morphism of schemes, one defines

f*:=(0x ®p-10, )of':Qcoh(Y) ——= Qcoh(X).

This is a right exact functor, as it is the composition of the exact functor
f~!:Sho, (Y)—=Sh;-10, (X) and the right exact functor Ox ®¢-10, ( ) :
Sh;-10, (X) —=Sho, (X). (To be very precise, the latter takes a priori values
in Shy-10, (X), but the tensor product Ox ®;-10, F comes with a natural
Ox-module structure.)

Clearly, the inverse image in this sense maps a coherent sheaf to a coherent
sheaf, i.e.

f*: Coh(Y) —= Coh(X).

To conclude, we recall that f* 4 f.. Due to the general fact (see Remark 1.16),
this shows once more that f* and f,. are right, respectively left exact.

Now, back to the abstract setting. We let F' : A—B be a left exact functor
of abelian categories. Furthermore, we assume that 4 contains enough inject-
ives. In particular, we will use the equivalence ¢ : K*(Z4) —=D%(A) naturally
induced by the functor Q4 : K*(A) —=D¥(A) (see Proposition 2.40). By +~!
we denote a quasi-inverse of ¢ given by choosing a complex of injective objects
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quasi-isomorphic to any given complex that is bounded below. Thus, we have
the diagram

K(F)
K*(Za) — K*(A) —— K" (B)

Here, K(F) is the functor that maps (... —=A""! —= Al s AL~ )
to (... —=F(A"71)—F(A") — F(A"1) — ...) which is well-defined for the
homotopy categories.

Definition 2.46 The right derived functor of F' is the functor
RF :=Qpo K(F)o. ' :D*(A) —— D (B).
Let us list some of the main properties of the right derived functor:
Proposition 2.47 i) There exists a natural morphism of functors
QRpoK(F) ——= RFoQ4.

ii) The right derived functor RF : DY (A)—=D™(B) is an ezact functor of
triangulated categories.

iii) Suppose G : DT (A)—=D*(B) is an ezact functor. Then any functor
morphism Qg o K(F)—G o Q4 factorizes through a unique functor morphism
RF —G.

Proof i) Let A* € D¥(A) and I°® := ¢~(A®). The natural transformation
id—>¢ 07" yields a functgrial morphism A®—=1T* in D¥(A), which itself
is given by some roof A®*<—(C®—=1I°. Using the injectivity of I’ yields a
unique morphism A®* —17* in K(A) (see Lemma 2.38), which, moreover, is
independent of the choice of C®. Altogether, one obtains a functorial morphism
K(F)(A*)—K(F)(I*) = RF(A®).

ii) The category KT (Z 4) is triangulated and ¢ : K¥(Z4) —=D7(A) is clearly
exact. Thus, also the inverse functor ¢ is exact (cf. Proposition 1.41). Hence, RF'
is the composition of three exact functors and, therefore, itself exact.

iii) See [39, IIL.6.11]. |

These properties determine the right derived functor RF of a left exact functor
F up to unique isomorphism.
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Definition 2.48 Let RF : DT (A)—=D™"(B) be the right derived functor of a
left exact functor F: A—=B. Then for any complez A* € DT (A) one defines:

R'F(A®) := H'(RF(A®)) € B.
Remark 2.49 The induced additive functors
RF: A—B

are the higher derived functors of F'.
Note that RPF(A) = 0 for i < 0 and R'F(A) ~ F(A) for any A € A. Indeed, if

A I It

is an injective resolution, then R‘F(A) = HY(... —F(I°)—F(I')—..))
and, in particular,

ROF(A) = Ker(F(I°) — F(I')) = F(A),

as F' is left exact.
An object A € A is called F-acyclic if R'F(A) ~ 0 for i # 0.

Corollary 2.50 Under the above assumptions any short exact sequence

0 A B C 0

in the abelian category A gives rise to a long exact sequence

0 ——= F(4) F(B) F(C) —— R'F(A) —— ---

. — > RIF(B) —> RF(C) —> R F(A) —> -

Proof According to Exercise 2.27, any short exact sequence in A gives rise
to a distinguished triangle A— B —C — A[1] and hence to a distinguished
triangle RF(A)— RF(B)—= RF(C)—= RF(A)[1]. One concludes by using
Exercise 2.28. O

Remark 2.51 Going through the above arguments, one finds that our hypo-
thesis can be weakened. This remark explains two possible and useful ways to
do so. Firstly, the functor might only be given between the homotopy categories
(and not between the abelian categories) and, secondly, we might have to work
with abelian categories which do not contain enough injectives.

e Let us give the most general statement right away (see [44, II, 5.1]): Suppose
A and B are abelian categories and

F:K*(A) — K(B)
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is an exact functor (recall that both categories are triangulated). Then the right
derived functor

RF : D (A) — D(B)

satisfying 1)—ii) of Proposition 2.47 exists whenever there exists a triangulated
subcategory Kr C KT (A) which is adapted to F, i.e. which satisfies the following
two conditions:

i) If A® € KF is acyclic, i.e. H/(A®) = 0 for any 4, then F(A®) is acyclic.

ii) Any A* € K*(A) is quasi-isomorphic to a complex in Kp.

We will need this more general statement, e.g. in order to define the derived
functor RHom®(A®, B®) or, for a more geometrical example, the left derived
functor of the tensor product of two sheaves. In the first case, we start out with
a functor that only lives on the level of complexes and in the latter we have to
deal with the fact that the category of sheaves over a ring in general does not
contain enough projectives.

e If the functor F' is given on the level of the abelian categories, but find-
ing enough injectives is problematic (or simply impossible), then the following
approach towards the derived functor, as a special case of the general one above,
often works. See [39, III.6].

Suppose F' : A— B is a left exact functor. In this situation one defines ‘adap-
ted’ already on the level of the abelian categories. A class of objects Zp C A
stable under finite sums is F'-adapted if the following conditions hold true:

i) If A® € KT (A) is acyclic with A® € Zr for all i, then F(A®) is acyclic.

ii) Any object in A4 can be embedded into an object of Zp.

Under these conditions, the localization of KT (Zr) by quasi-isomorphisms
between complexes with objects in Zr is equivalent to DT (A). This is due to
ii). Condition i) ensures that the image under F' of a quasi-isomorphism of com-
plexes in Zp is again a quasi-isomorphism. Hence, we may define K(F') on the
localization of K*(Zp) (cf. Lemma 2.44). The right derived functor RF of F is
then defined in the same way by using these two facts.

Note that if A contains enough injectives, then the class of injective objects
T4 is F-adapted for any left exact functor F. In this case, we may enlarge 7 4
by all F-acyclic objects, i.e. by those objects A € A with R‘F(A) = 0 for i # 0.
This yields a larger adapted class for F.

Exercise 2.52 Let Zp be an F-adapted class, e.g. the class Z 4 of all injective

objects in an abelian category with enough injectives. Show that enlarging Zp
by all F-acyclic ones yields again an F-adapted class. Use Corollary 2.50.

Exercise 2.53 Let Zr be an adapted class for a left exact functor F' : A—=B.
Show that R'F(A) =0 for all i # 0 and all A € Zp.

Exercise 2.54 Suppose we know that the right derived functor RF' exists. Let
A® be a complex of F-acyclic objects. Show that RF(A®) ~ K(F)(A®).
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In other words, in order to compute RF(A®) of an arbitrary complex A® it
suffices to find a qis A®* ~ I* € KT(A) such that all I* are F-acyclic. Then
RF(A®) ~ K(F)(I*).

Exercise 2.55 Write down the conditions on a class of objects to be adapted
to a right exact functor. (This actually is the situation one needs to consider for
the tensor product.)

In Section 3.1 we will study in detail a number of derived functors in the
geometric setting, e.g. higher direct images. Here, we shall stay in the general
situation and only consider the covariant functor Hom(A4, ) : A—Ab for
an arbitrary object A € A and its contravariant relative Hom( , A). Clearly,
Hom(A, ) is left exact and if A contains enough injectives, one defines

Ext’(A, ):= H'o RHom(4, ).

It turns out that these Ext-groups can be interpreted purely in terms of certain
homomorphism groups within the derived category:

Proposition 2.56 Suppose A, B € A are objects of an abelian category
containing enough injectives. Then there are natural isomorphisms

Ext; (4, B) ~ Homp)(4, Bli]),
where A and B are considered as complexes concentrated in degree zero.

Proof Suppose

B 1° It

is an injective resolution of B. By construction, RHom(A, B) as an object of
the derived category DT (Ab) is isomorphic to the complex (Hom(A, I?));en.
Therefore, Ext*(A, B) is the cohomology of this complex.

A morphism f € Hom(A,I?) is a cycle, i.e. it is contained in the kernel of
Hom(A, I') —Hom(A, I**t1), if and only if f defines a morphism of complexes
f + A—=T°*[i]. This morphism of complexes is homotopically trivial if and only
if f is a boundary, i.e. in the image of Hom(A, I'~!) —Hom(4, I'*).

Hence, Ext’(A, B) ~ Homg (4)(A, I*[i]). Since I*® is a complex of injectives, we
have Homg 4y (A, I*[i]) = Homp4)(A, I*[i]) (see Lemma 2.39). Using B ~ I*
as objects of DT (A), this proves the assertion. m]

Remarks 2.57 i) The above arguments can easily be generalized to a descrip-
tion of Ext’4(A°®, B*®). Suppose A®* € Kom(.A). Then, the exact functor

Hom®(A®, ):K*"(A4) —— K(Ab)

associates to a complex B® the inner hom Hom®(A®, B®).
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By definition Hom®(A®, B®) is the complex with
Hom'(A®, B*) := (P Hom(A*, B¥™) and d(f):=dpo f—(~1)'foda.

The full triangulated subcategory of complexes of injectives is adapted to this
functor (always under the assumption that A has enough injectives) and we may
define

RHom®(A*, ):D*(A) —— D(ADb)

(see Remark 2.51). Then set
Ext‘(A®, B®) := H'(RHom®(A®, B*)).

The arguments to prove Proposition 2.56 can be adapted to this more general
situation. One obtains natural isomorphisms

Ext’(A®, B*) ~ Homp4)(A®, B*[i]). (2.2)

ii) It is noteworthy, that by (2.2) these Ext-groups only depend on A°® as
an element of the derived category. Indeed, if A} — A3 is a qis, then the
induced morphism RHom®(A$, B*) — RHom®(A$, B®) yields isomorphisms on
the cohomology and is therefore an isomorphism in D(Ab). Hence, by the prin-
ciple applied already in Lemma 2.44 the functor RHom®( , B®) descends to the
derived category and we have thus defined a bifunctor

D(A)°P x DT(A) — D(Ab),

which is exact in each variable. (Alternatively, it suffices to check that for an
acyclic complex A® the complex RHom®(A®, B®) is acyclic which follows directly
from (2.2).)

iii) Suppose that A is a category with enough projective objects. Then one
defines for any complex B* € Kom(.A) the right derived functor of the left exact
functor Hom( , B®) : K~ (A)°®» —K(ADb). This yields the exact functor

RHom®( ,B*): D~ (A)*® — D(Ab).

Using similar arguments as in ii), one finds that it only depends on B® as an
object in the derived category and thus defines again a bifunctor which is exact
in the two variables

D~ (A)° x D(A) —> D(Ab).

If A has enough projectives and enough injectives, then the two bifunctors in
ii) and iii) give rise to the same bifunctor (cf. [44, I, 6.3])

RHom®*( , ):D~(A)°® x D*(4) — D(Ab).
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That the cohomology of both yields the same, follows from the above
remarks.

Also note that in a category A with enough injectives, but possibly not enough
projectives, due to ii) the derived functor RHom®( ,B®): D™ (A)°? —D(Ab)
nevertheless exists if B® is bounded below.

iv) Composition in the derived category naturally leads to composition for
Ext-groups:

Ext’(A®, B*) x Ext’ (B*,C*) — Ext'™/(A*,C*),

where we assume for simplicity A®, B*,C* € DV (A).
Indeed, elements in

Ext’(A®, B*) ~ Homp4)(A®, B*[i])
and
Ext/(B®,C*) ~ Homp4)(B*, C*[j]) = Homp ) (B*[i], C*[i + j])
can be composed to elements in Ext"*7(A®,C*) ~ Homp4)(A®, C*[i + j]).

Proposition 2.58 Let I} : A—=B and Fy : B—C be two left exact functors
of abelian categories. Assume that there exist adapted classes Tp, C A and Ip, C
B for F1, respectively Fy such that Fy(Zp,) C Ip,.

Then the derived functors RFy : DT (A)—=D™"(B), RFy : D*(B)—D"(C),
and R(Fy o Fy) : DT (A)—=D™(C) exist and there is a natural isomorphism

R(FQ OF1) ~ RF2 ORFl.

Proof The existence of RF; and RF5 follows from the assumptions. Moreover,
since F1(Zr,) C Ip,, the class Zp, is also adapted to the composition F» o Fy
and, hence, R(F; o F}) exists as well.

A natural morphism R(F, o F1) —= RF5 o RF} is given by the universality
property of the derived functor R(F; o Fy).

If A* € DT(A) is isomorphic to a complex I* € KT (Zp, ), then this morphism

R(Fy 0 Fy)(A®) - R(F2)((RF1)(A®))
~ (K (F2) o K(Fy))(I°) R(FL) (K (F1)(1%))
K(F2)(K(F1)(I%))

~
~

is an isomorphism. O

Remarks 2.59 i) Suppose that .4 and B both contain enough injectives. Then
the assumption of the proposition is satisfied if Fy(Z4) C Zg, but this might be
difficult to verify. We might, however, enlarge Zg by all Fh-acyclic objects in B,
i.e. by objects B with R!Fy(B) = 0 for i # 0. This yields a new adapted class Zr,
(see Exercise 2.52) and we then only have to show that for any injective object
I €74 C A the image Fy(I) € B is Fx-acyclic. The proposition is often applied
in this form.
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ii) The result also holds true for the derived functors of exact functors
between the homotopy categories. In this case, one starts with exact functors
F : KM (A)—K"(B) and F, : K (B) —K(C), for which one assumes the
existence of adapted triangulated subcategories Kr, C KT (A) and Kr, C KT (B)
such that F1(Kg, ) C Kp,.

2.3 Spectral sequences

In this short section we will explain how spectral sequences occur whenever two
derived functors are composed. We will not enter the very technical details of
this machinery, but hope to provide at least the amount necessary to follow the
applications in the later sections.

The main data of a spectral sequence in an abelian category A is a collection
of objects

(BP9, E™), n,p,q,r € Z,r 2 1,
and morphisms

dpa ;. gpa > E713+r,qfr+1

subject to the following conditions.

i) @gptma=rtl o gP4 = ( for all p,q,r, which thus yields a complex
Epter,g—erte
P .

ii) There are isomorphisms

P:qd A~ 0 p+er,g—er+e
Er+1 ~H (Er )

which are part of the data.

iii) For any (p, q) there exists an ro such that dP¢ = d¢="97"=1 = ( for r > ry.
In particular, El*? ~ EP:? for all r > ro. This object is called EZ7.

iv) There is a decreasing filtration

...FPYIE" c FPE" C ... C E",
such that
ﬂFPE" =0 and UF”E” = E™,
and isomorphisms
EP1 ~ FpEp+q/Fp+1Ep+q.
So, in some sense the objects EP'¢ converge towards subquotients of a certain
filtration of E™. Usually, all the objects of one layer, say EP*¢ with r fixed, are

explicitly given. Then one writes
EPY — EPta
L .

(In the definition of the spectral sequence, we may as well just require the terms
EP- be given only for r > m for some m. The information is just the same. In
fact, in the applications the spectral sequences are often given for r > 2.)
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It may help to visualize these data as follows. For » = 1 one has the following
system of horizontal complexes:

q

Ef_Q’QH s Eylo—l,q-H N Ef’qH S E{H-Lq-irl
Epf2>q S Effl,q S Ef’q S E110+1,q

1

p—2,q—1 p—1,q—1 p,q—1 p+1,q—1
By — B — B — B

p
For r = 2 it looks like this:
q
E§72,q+1 ngl,lﬁl Eg,qul E§+17q+1 -
\\
E§—2,q Eg—l,q Eb1 E§+1,q .
E§72,q71 ngl,qfl Eg,qfl E§+1,q71
p

Remark 2.60 In most of the applications one does not go beyond Es or E3.
In the easiest situation the argument will go like this: For some reason one knows
that all differentials on the Fs-level are trivial. Hence, E™ admits a filtration the
subquotients of which are isomorphic to F¥"""?. E.g. if the objects are all vector
spaces, then this yields a non-canonical isomorphism E" = @@ EY" 7.

Sometimes, one just knows the vanishing of d*? and d?~"97"~1 for some (p, q)
(e.g. for the simple reason that all EP*™4="*1 are trivial). In this case, the
non-vanishing EY*? = 0 implies EPT7 #£ 0.
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The standard source for spectral sequences are ‘nice’ filtrations on complexes.
Such ‘nice’ filtrations occur naturally on the total complex of a double complex
concentrated in, e.g. the first quadrant. We briefly sketch this part of the theory.

Definition 2.61 A double complex K** consists of objects K" fori,j € Z
and morphisms

Ao K —— Kitli  and  dY c K —— [id+]

satisfying
d? = d% =drdy +dpgdr = 0.

The total complex K*® := tot(K**) of a double complex K** is the complex
K™= ®i+j:n K% with d = dr +djr.

In particular, K** and K*7 form complexes for all %, j

Examples 2.62 The complex Hom®(A®, B®) is the total complex of the nat-
ural double complex K% := Hom(A™%, B’) endowed with the two differentials
dr = (—1)j’i+1d,4 and djy = dg. There is absolutely no guarantee for the signs
here. One finds all kinds of sign conventions in the literature, in the definition
of a double complex, as well as in the construction of its total complex, and
in the definition of Hom®( , ). Mostly, the differences in the signs are of no
importance, but getting it coherent is troublesome.

On the total complex K*® of a double complex K*®* there exists a natural
decreasing filtration (in fact, there are two natural ones due to the symmetry of
the situation):

F'E™ = P K", (2.3)
>t

which satisfies dr(F*K™) C FY(K™+1).
This lends itself to the following generalization.

Definition 2.63 A filtered complex is a complex K® together with a decrea-
sing filtration ... F'K™ c F*='K™ C ... C K™ for all the objects K™ such that
d"(F*K™) C FPK"H.
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 — s anl Kn Kn+1 - = ...

] ] ]

s F@(Kn—l) FE(K”) FZ(KnJrl) . ...

] ] ]

. 5 F£+1(anl) N Ferl(Kn) N FZJrl(KnJrl) -

Back to the case of the total complex of a double complex. Clearly, the graded
objects gr! K™ = FYK™/(F/H1K™) = K" %! form the complex K**[—¢] (up to
the global sign (—1)¢). Hence, H*(grf(K*®)) = H*~*(K*"*) and the cohomology
of this complex (with respect to the surviving djr) yields HfI(H}“_é(K"')).

Assuming an additional finiteness condition, any filtered complex gives rise to
a spectral sequence. More precisely, one has to assume that for each n there exist
{4 (n) and £_(n) with F*K™ =0 for £ > ¢, (n) and F'K"™ = K" for £ < {_(n).

In the situation of the double complex this translates to:

Proposition 2.64 Suppose K** is a double complex such that for any n one
has K"=%%* =0 for |¢| > 0. Then the filtration (2.3) naturally induces a spectral
sequence

EYY = HY HI(K**) = HPTI(K*). (2.4)

Remark 2.65 As mentioned, the proposition works more generally for filtered
complexes. Moreover, it actually yields an Ei-spectral sequence

EPY = HPTI(FPK® [FPTK®).
In case of a double complex as above, this reads
BT = HPI(KP=p]) = HI(K) = HY9(K)

The construction of the spectral sequence is explicit, but the verifications,
although in principle elementary, are cumbersome. Let us just describe the
objects EP'? and the filtration of the limit E". First, one introduces

ZP4 = - (FPYTRPTatly 0 (FP P
and then sets

P4 . 7DP,q p+1,q—1 p—r+1,q+r—2
Er L Zr /(erl +er71 .

Eventually, FPH"(K*®) := Im (H"(FPK®*) — H"(K*)).
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The general fact is crucial for the proof of the next proposition, which is often
applied to the derived functors of functors between abelian categories and an
object A € A. The following more general form turns out to be useful as well.

Proposition 2.66 Let F} : KT (A)—KT*(B) and F» : Kt(B) —K(C) be two
exact functors. Suppose that A and B contain enough injectives and that the
image under F of a complex I® with I' € T4 is contained in an Fy-adapted
triangulated subcategory Kr,.

Then for any complex A®* € DT (A) there exists a spectral sequence

EP! = RPFy(R1FY(A®)) = E" = R"(Fy 0 Fy)(A*), (25)

Surprisingly, this is even interesting in the case that F} is the identity. For any
left exact functor F the spectral sequence (2.5) then reads

EY? = RPF(HY(A®)) = RPTIF(A®). (2.6)
The special case (2.6) is the key to the general result: Suppose A®* € DT (A)
is isomorphic to a complex I* € K*(Zg,). Then RF;(A®) ~ Fy(I*) and
RPFy(RIF1(A®)) ~ RPF,(HY(Fy(I%))).
On the other hand,
R"(Fy o0 F1)(A®) ~ H"(R(Fy 0 F1)(A®)) ~ H"(RF»(RF1(A*)))
Thus, it suffices to prove (2.6) for which we will have to write down the appro-
priate double complex. This double complex is provided by the Cartan—Filenberg
resolution of A®.

The Cartan-Eilenberg resolution is a double complex C'** together with a
morphism A® — C*? such that:

i) ¢ =0 for j < 0.
ii) The sequences

Ai Ci70 Ci’l

are injective resolutions of A’ inducing injective resolutions of Ker(d’),
Im(dy), and H'(A®).
iii) The sequences C'*7 are split for all j, i.e. all short exact sequences

0 — Kerd}’ Cii Im(d}’) — 0
split.

A Cartan—Eilenberg resolution exists whenever the abelian category contains
enough injectives (see [39, IIL.7]).

In our situation, we use the Cartan—Eilenberg resolution C'** of A® to define
the double complex K** by K := F(C%). Then H}(K**) = FH}(C*"),
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because of iii). As H}Z(C"e) for fixed ¢ and running ¢ defines an injective
resolution of H?(A®) (see ii)), we obtain
HY H](K*®) = RPF(H(A®)).
The limit in the spectral sequence (2.4) is
HPV(tot(K*®)) = HPT(F(tot(C**®))) = HPTI(RF(A®))

= RPTIF(A®),
where in (x) we use the general fact that if C'** is a double complex satisfying
i) and such that there exists a complex morphism A® —=(C*? inducing resolu-
tions A* —(C*% — (%! — .. then the induced morphism A® —tot(C**) is
a quasi-isomorphism.

Note that the finiteness assumption needed to ensure the convergence is satis-
fied due to our assumption that A® € K (A).

Remark 2.67 One also has a spectral sequence
EV'? = RIF(AP) = RPTIF(A®),

which sometimes is very useful. This is a consequence of Remark 2.65, but with
respect to the other filtration of the image under F' of the Cartan—FEilenberg
resolution C** of A°®. Indeed, if K77 = F(CP'?), then

HI(KP*) = HY(F(CP*)) = RIF(AP).

In the geometric context we will often make use of the facts that shall be
explained next. The reason behind this is that the derived category of complexes
bounded from below very convenient for the definition of various derived functors,
but slightly too big for other purposes.

Corollary 2.68 Suppose F' : Kt(A)—K*(B) is an exact functor which
admits a right derived functor RF : DY (A)—=D"(B) and assume that A has
enough injectives.

i) Suppose C C B is a thick subcategory with R'F(A) € C for all A € A and that
there exists n € Z with R'F(A) =0 fori <n and all A € A. Then RF takes
values in DF (B), i.e.

RF : D*(A) — D{(B).

ii) If RF(A) € D(B) for any object A € A, then RF(A®) € DP(B) for any
complex A®* € D*(A), i.e. RF induces an exact functor

RF : DP(A) — DP(B).

Proof Both assertions follow immediately from the spectral sequence E5'? =
RPF(HYI(A®)) = RPTIF(A®). a
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Remark 2.69 i) In many cases, the category Dé“(B) is equivalent to the
derived category DT (C). See Proposition 2.42.

ii) The assumption that there exist enough injectives can be weakened. In fact,
assertion ii) holds true whenever the derived functor exists, but the spectral
sequence cannot be applied directly, as it had been constructed in terms of a
Cartan—Eilenberg resolution.

For example, let A* € DP(A) be a bounded complex with A® = 0 for i > n.
Choose a quasi-isomorphism A® —I*® with F-acyclic objects I*. Then,

A:=Ker(d}) —= 7 ——= [+l —— nt2 — > ...

is an F-acyclic resolution of A € A. Thus, F(I'"1) — F(I*) — F(I'*1) is exact
for i > 0, for R'F(A) = 0 for i > 0 by assumption. Hence, R'F(A®) = 0 for
i > 0 and, therefore, RF(A®) € D®(B).

Examples 2.70 i) Let A*, B* € D(A) with B® bounded below and suppose
that 4 has enough injectives. Then there exists a spectral sequence

E5? = Homp(4)(A®, HY(B®)[p]) = Homp4)(A®, B*[p + q]). (2.7)
Here we use (2.2) for the identification
RPHom®(A®, HY(B*)) ~ Ext?(A®, HY(B*®)) ~ Homp4)(A*, H*(B*®)[p]).

ii) Similarly, if A contains enough projectives, such that we can compute
RPHom(A®, B®) for A® bounded above as the right derived functor of the con-
travariant functor Hom®( ,B*®) : K7 (A)°® —K(Ab), then we can use the
spectral sequence

E} = Hompa) (H~(4°), B*[p]) = Homp()(A* B*[p +4)).  (28)

In fact, we will use this spectral sequence also in the case when A only has
enough injectives. Then we have to assume that B*® is bounded below. In this
case we cannot apply Proposition 2.66 directly, but a similar argument via a
double complex yields the result.

More precisely, one argues as follows. Suppose A* € K~ (A) and B* € K+ (A).
Since we assume that A has enough injectives, there exists a qis B®* —1I°* €
K*(A) with all I* injective. Then, following Example 2.62 we form the double
complex K%J := Hom(A~%, I7) with differentials d; = (=1)7~*'d4 and dj =
dp. With the notation introduced above, we find that the complex (gr‘K*®, d;)
is just Hom(A®, I*)[—].

Since I is injective, the functor Hom( ,I*) is exact and thus commutes with
cohomology. Hence, H*(Hom(A®, I*)[—/]) = Hom(H*"*(A*), I*). Therefore,

HYHI(K**) = HP(Hom(H9(A*), I*) = Ext? (H1(A*), B*).

The finiteness condition on the filtration needed for the convergence of the
spectral sequence is provided by the boundedness assumption on A® and B°.
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Eventually, the limit of the spectral sequence is identified as H™(tot(K**)) =
H"(Hom®(A°*,I*)) ~ Ext"(A®, B®).

Exercise 2.71 Assume the spectral sequences (2.7) and (2.8) exist. Suppose
A*,B* € D”(A) with H(A®) = 0 for i > 0 and H*(B*) = 0 for i < 0. Prove
Hom(A®, B*) = 0.

We conclude with a discussion of ‘ample sequences’ in abelian categories. Geo-
metrically, as the name suggests, this concept is realized by powers of an ample
line bundle on a projective variety. This will be explained in Section 3.2. Thus,
the abelian category we have in mind is Coh(X).

Any ample sequence in an abelian category turns out to be a spanning class
in the associated derived category. So, in spirit the main result, Proposition
2.73, belongs in Section 1.3, but as ampleness of sequences makes sense only for
abelian categories and their derived categories, it is included here. You may skip
this part and come back to it when proving Proposition 3.18.

Definition 2.72 A sequence of objects L; € A, i € Z, in a k-linear abelian
category A is called ample if for any object A € A there exists an integer ig(A)
such that for i < ig(A) the following conditions are satisfied:

i) The natural morphism Hom(L;, A) ® L; —= A is surjective.
ii) If j # 0, then Hom(L;, A[j]) = 0.
iii) Hom(A, L;) = 0.

In order to define the tensor product V ®j L (where V' is a vector space and
L € A) as an object in A properly, we either have to assume that V is finite-
dimensional or that infinite direct sums exist in .A. Later, our category A will
be Coh(X) of a projective variety over a field k& and hence all Hom(L;, A) are
indeed finite-dimensional.

Proposition 2.73 Let L;, i € 7Z be an ample sequence in a k-linear abelian
category A of finite homological dimension. Then, considered as objects in the
derived category DP(A), the L; span DP(A).

Before giving the proof let us first recall what it means to be of finite homo-
logical dimension. If A has enough injectives, then it means that there exists an
integer ¢ such that Ext’(A,B) = 0 for all A,B € A and all i > £. If we don’t
want to assume or don’t want to use the existence of enough injectives, we can
simply require that Homp4)(A, B[i]) = 0 for all A, B € A viewed as objects in
the derived category D(A) and all ¢ > ¢. That the two definitions are equivalent
follows from Proposition 2.56.

If A has finite homological dimension, then for a fixed bounded complex A®
there exists ig(A®) such that Hom(A®, B[i]) = 0 for all i > ig(A®) and all
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B € A. A quick way to see this is by applying the spectral sequence (under
the assumptions of enough injectives or any other ensuring its existence):

ED% = Hom(H~(A*), Blp]) = Hom(A®, B[p + q]).

The EY%-term is trivial for p > ¢. Hence, Hom(A®, B[i]) = 0 for i > io(A4®*) :=
0+ max{m | H-™(A*) # 0}.

(An elementary proof, i.e. one avoiding the spectral sequence, is also available.
It eventually is enough to show that there are no complex morphisms B®* — BJi]
for ¢ > ig(A®) for any complex B® with the same cohomology as A®. Splitting
the complex B® in short exact sequences yields the result. We leave the details
of this argument to the reader.)

Proof The proof of the proposition consists of two steps proving the two condi-
tions i) and ii) in Definition 1.47. (In fact, one proves a slightly stronger version of
both. See Remark 2.75.) Ounly in the proof of i) do we need the extra assumption
on the homological dimension.

i) Let A® € D"(A) such that Hom(L;, A*[j]) = 0 for all i and all j. Suppose
A® is non-trivial. Thus, we may assume that A® is of the form

0 An AnJrl P

with H"(A®) # 0 (cf. Exercise 2.31).
Hence, Hom(L;, H"(A®*)) “—= Hom(L;, A*[n]) = 0 for all 4. On the other
hand, by condition i) of Definition 2.72, the evaluation map

Hom(L;, H"(A®*)) ® L; —== H"(A*)

is surjective for ¢ < io(H™(A®)). This yields a contradiction and, hence, A® =~ 0.

ii) Let A* € DP(A) such that Hom(A®, L;[j]) = 0 for all i and all j. If Serre
duality is available (e.g. if A = Coh(X) with X smooth projective, see Theorem
3.12), then this case can be reduced to the preceding discussion and we obtain
immediately A® ~ 0.

If not, the argument is slightly more involved and runs as follows. We may
assume that A® is a bounded complex of the form —= A" — A" —0— ...
with H™(A®) # 0. The ampleness of {L;} allows us to construct a surjection

Hom(L;, H*(A®)) ® L; —= H"(A®)

for any i < ig(H™(A®)). Its kernel will be called B;. Since Hom(A®, L;) = 0, the
long exact sequence induced by

0 —> B; —> Hom(L;, H"(A*)) ® L; —> H"(A®) —> 0
yields an injection Hom(A®, H"(A*)) = Hom(A®, B;[1]), for its kernel is a

quotient of
Hom(A®,Hom(L;, H"(A®)) ® L;) = Hom(L;, H"(A*®)) ® Hom(A®, L;) = 0.
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Then one continues to proceed with B; in the same way, i.e. one finds a
surjection Hom(L;, B1) ® L; — B; and denotes its kernel by Bs. (One might
have to pass to an even smaller i.) As before, the induced long exact cohomology
sequence yields an injection

Hom(A*®, By[1]) —— Hom(A*, B:[2]),

because Hom(A®, L;[j]) = 0. Thus, recursively we obtain nested inclusions

Hom(A®, H*(A®)) = Hom(A®, B;[1]) & Hom(A*, B3[2]) ——

Since there exists a non-trivial morphism A® — H"(A*®), we obtain in this way
for all j > 0 an object B; € A with Hom(A®, B;[j]) # 0. This contradicts the
assumption on the homological dimension of A and its consequences explained
above. m|

Exercise 2.74 Go through the above proof again and show that we have actu-
ally only used condition i) in Definition 2.72. (The other ones will play their role
in Chapter 4.)

Remark 2.75 The above proof shows slightly more. Namely, if for a given
complex A® and all ¢ < 0 (depending on A®) one has Hom(A®, L;[j]) = 0 for
all j, then A® ~ 0. Similarly, for the vanishing of Hom(L;[j], A®).
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DERIVED CATEGORIES OF COHERENT SHEAVES

This chapter applies the general machinery of the last one to derived categories
of sheaves on a scheme or a smooth projective variety. Most of the material is
standard (Serre duality, higher direct images, etc.) but a few more recent results
are blended in to prepare the stage for the sequel, e.g. we will prove a few results
ensuring that the categories in question are accessible by the methods discussed
in Chapter 1.

Section 3.1 introduces the category we are primarily interested in, the derived
category of the abelian category of coherent sheaves. As an injective sheaf is
almost never coherent, quasi-coherent sheaves cannot be avoided. The section
contains first structure results, in particular for curves. Serre duality, a topic
that will be taken up in greater generality in Section 3.4, will be stated in its
derived version.

In Section 3.2 we prove that the structure sheaves of closed points and the
powers of an ample line bundle provide examples of spanning classes.

All kinds of derived functors, important in the geometric context, are intro-
duced and discussed in Section 3.3. Useful technical results, mostly concerning
the various compatibilities between them, are stated and partially proven.

3.1 Basic structure

The derived category of coherent sheaves enters the stage. We show that it is
indecomposable if and only if the scheme is connected. A derived version of Serre
duality (see Theorem 3.12) is stated and used to show that on a curve objects
in the derived category can always be written as direct sums of shifted sheaves
(see Corollary 3.15).

The category we are primarily interested in is the category of coherent sheaves
on a projective variety or, more generally, a (noetherian) scheme:
Definition 3.1 Let X be a scheme. Its derived category DP(X) is by definition
the bounded derived category of the abelian category Coh(X), i.e.
DP(X) := D”(Coh(X)).
Definition 3.2 Two schemes X andY defined over a field k are called derived

equivalent (or, simply, D-equivalent) if there exists a k-linear exact equivalence
DP(X) ~ DP(Y).

Similarly, one introduces D(X), D¥(X), and D™ (X), but the hero of this
course is the bounded derived category DP(X). Unfortunately, the underlying
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abelian category Coh(X) usually contains no non-trivial injective objects, so
that in order to compute derived functors we have to pass to bigger abelian
categories. Most often, we will work with the abelian category of quasi-coherent
sheaves Qcoh(X), with its derived categories D*(Qcoh(X)) with * = b, +, —,
and sometimes with the abelian category of Ox-modules She, (X).

Whenever the scheme X is defined over a field k, the derived categories will
tacitly be considered as k-linear categories.

Notation In order to avoid any possible confusion between sheaf cohomology
H*(X,F) and the cohomology H*(F*) of a complex of sheaves, we will from now
on write H!(F*) for the latter.

Proposition 3.3 On a noetherian scheme X any quasi-coherent sheaf F
admits a resolution

0 F 7° 7!
by quasi-coherent sheaves ¢ which are injective as Ox-modules.

Proof For a proof see [44, II, 7.18]. O

Thus, in the case we are interested in, i.e. X a (smooth) projective variety
over a field, the result applies. So due to Proposition 2.42, we can either think
of D*(Qcoh(X)) (with * = b, +) as the bounded (resp. bounded below) derived
category of Qcoh(X) or as the full triangulated subcategory of D*(She, ) of
bounded (resp. bounded below) complexes with quasi-coherent cohomology:

Corollary 3.4 For any noetherian scheme there are natural equivalences:

D*(Qcoh(X)) =~ Dycon(Shoy (X))

— ~qcoh
with * = b, +. O

The passage from the quasi-coherent to the coherent world is trickier. Obvi-
ously, Proposition 2.42 does not apply for the simple reason that a finitely
generated module is usually too small to be injective. In other words, we cannot
hope to find an injective (in Coh(X) or Qcoh(X)) resolution of a coherent sheaf
by coherent sheaves. We nevertheless have the following result.

Proposition 3.5 Let X be a noetherian scheme. Then the natural functor
DP(X) —=DP(Qeoh(X))

defines an equivalence between the derived category DP(X) of X and the full
triangulated subcategory DP . (Qcoh(X)) of bounded complexes of quasi-coherent

coh
sheaves with coherent cohomology.

Proof Let G* be a bounded complex of quasi-coherent sheaves
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with coherent cohomology H‘. Suppose G is coherent for i > j. Then apply
Lemma 3.6 below to the surjections

di .G — Im(d’) c g7t and Ker(d/) —= HJ

which yield subsheaves g{ C G/ and gg C Ker(d?) C G7, respectively. We may
now replace G by the coherent sheaf generated by g, i=1,2, and G ! by
the pre-image of the new G under G/~! —=GJ. Clearly, the inclusion defines a
quasi-isomorphism of the new complex to the old one and now G’ is coherent for
P> 0
Lemma 3.6 IfG—=F is an Ox-module homomorphism from a quasi-coherent
sheaf G onto a coherent sheaf F on a noetherian scheme X, then there exists
a coherent subsheaf G' C G such that the composition G’ C G—==F is still
surjective.

Proof The statement is clear for modules: For any surjection M —= N with IV
finitely generated, there exists a finitely generated module M’ C M that projects
onto N. Thus, locally the statement holds true. Covering X by finitely many open
affines, the assertion reduces to the following well-known statement (cf. [45, II,
Exc.5.15]). Let U C X be an open subscheme of a noetherian scheme X and let
F C Glu be a coherent subsheaf of the restriction of a quasi-coherent sheaf G on
X. Then there exists a coherent subsheaf ' C G such that F'|y = F. m|

Remark 3.7 i) Since Qcoh(X) has enough injectives (at least if X is noeth-
erian), we can define RHom®(£®, F*) for any £* € D(Qcoh(X)) and any
F* € DY (Qcoh(X)). In particular, this works for £*, F* € D(X).

Moreover, Remark 2.57 and Proposition 3.5 yield

Ext’(£°, F*) ~ Homps(x) (£, F*[i])
for all £*, F* € DP(X).
We will frequently use Examples 2.70, i.e. the spectral sequences (2.7) and
(2.8). Thus, for any £°, F* € DP(X) one has

BT = Ext? (€%, HY(F*)) = Ext? (€%, F*) (3.1)
and
BT = Ext’(H"(£°), F*) = Ext?™ (€%, F*). (3.2)

ii) It is a deep fact that for a projective variety X over a field k the cohomo-
logy H(X,F) of any coherent sheaf F is finite-dimensional (cf. [45, III, 5.2]
and Theorem 3.21). This can be used to show that Ext’(E,F) is also of finite
dimension for any two coherent sheaves £, F. By applying the spectral sequences
(3.1) and (3.2), one easily sees that Ext’(£®, F*) are actually finite-dimensional
for any £, F* € DP(X).
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Thus, in the sequel we will assume that Hom(E®, F*) is finite-dimensional for
all £*,F* € DP(X) as soon as X is projective over a field. This in particular
avoids all possible trouble with Serre functors in this category.

Before discussing any of the many geometric derived functors in Section 3.3,
let us prove a few results (Propositions 3.10, 3.17, 3.18) on the structure of the
derived category of coherent sheaves.

Definition 3.8 The support of a complex F* € DP(X) is the union of the
supports of all its cohomology sheaves, i.e. it is the closed subset

supp(F*) := | supp(H'(F*)).

Lemma 3.9 Suppose F* € D*(X) and supp(F*) = Z1UZy, where Zy,Zy C X
are disjoint closed subsets. Then F* =~ F} & F3 with supp(F;) C Z; forj = 1,2.

Proof One way to see this is by induction on the length of the complex. The
assertion is clear for complexes of length zero, i.e. for shifts of arbitrary coherent
sheaves, and will be proved in general by induction.

Let F* be a complex of length at least two. Suppose m is minimal with
0 # H™(F*) =: H. The sheaf H may be decomposed as H =~ H; & Hs
with supp(H;) C Z;. Consider the natural morphism H[—m]—=F* inducing
the identity on the m-th cohomology and choose a distinguished triangle (see
Exercise 2.33)

H[—m] F* ge H[1 - m].

The long exact cohomology sequence shows that H%(G®) = HI(F*) for ¢ > m
and H%(G*) = 0 for ¢ < m. Thus, the induction hypothesis applies to G* and
we may write G* = G} © G5 with supp(H?(G})) C Z; for all g. Next, use the
spectral sequence

EY = Hom(H™9(G%), Ha[p]) = Hom (G, Halp + q]).

to prove Hom(G?}, Hz[1 —m]) = 0. Indeed, H~9(G}) and Hz are coherent sheaves
with disjoint support and, hence, all Ext-groups between them are trivial. (This is
quite clear for Ext® and Ext'. The general case can be verified by either using
an injective or projective resolution of Has, respectively H~9(G¢) or by using the
local-to-global spectral sequence

BT = HP(X, Eat?( , ) = Ext?*i( , ),

that reduces the problem to a local statement, which then is obvious.)
Similarly, one finds Hom(G$, H;[1 —m]) = 0. This proves that F* ~ F? & F3,
where the 77 are chosen to complete G? —H; [1—m)] to a distinguished triangle

f; —_— g; —_— Hj[l—m} R fj.[l].
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In particular, supp(]:j') C Zj. Once a direct sum decomposition is established,

one necessarily has supp(F}) = Z;. O

Proposition 3.10 Let X be a noetherian scheme and let D°(X) be its
bounded derived category of coherent sheaves. Then DP(X) is an indecomposable
triangulated category if and only if X is connected. See [18].

Proof Definition 1.52 explains what is meant by decomposing a triangulated
category.

If X is not connected, e.g. X = X LI Xy, then we let D; := DP(X;) and
D, := DP(X5). Applying the lemma allows us to write any F* as

F e~ FroFs

with 72 € DP(X;). Thus, ii) in Definition 1.52 is clear and i) and iii) are rather
obvious.

Suppose now that X is connected and that DP(X) is decomposed by Dy, Dy C
DP(X). We shall derive a contradiction.

Consider Ox as an object in D?(X) and its decomposition Ox = FP®F3 with
F3; € D;. We may assume that 77 and JF3 are actually coherent sheaves, for their
cohomology is concentrated in degree zero. Since the direct sum is an O x-module
decomposition, they are ideal sheaves F? ~ Ty, of certain closed subschemes
Xj C X. Moreover, Ox = IXl +IX2 C IleX2 and IX1UX2 C IXl ﬂIX2 = 0.
Therefore, X1 N X, = @ and X; U X, = X. Since X is connected, one of the two
subschemes must be empty and hence either Ox € D; or Ox € Dy. Suppose
Ox € Ds.

If x+ € X is a closed point, then the decomposition of k(x) with respect
to D1,Do C DP(X) must be trivial. Hence, either k(x) € D; or k(z) € Ds.
The existence of the non-trivial homomorphism Ox — k(x) excludes the latter.
Thus, for any closed point x € X its structure sheaf k(x) is contained in D;.

Suppose there exists a non-trivial 7* € Dy. Choose m maximal with H"™ :=
H™(F*) # 0 and pick a closed point 2 in the support of H™. In particular,
there exists a surjection H™ —=k(x), which one uses to construct a non-trivial
morphism F® —k(z)[—m] in DP(X) as follows: Consider the natural quasi-
isomorphism

( — Fm-1l — > Ker(dm) 0 ) Fe

(see Exercise 2.31) and compose its inverse (in DP(X)) with the non-trivial

(... —= Fm—1 —— Ker(d™) 0...) H™ [—m]

—— k()[-m]

(cf. Exercise 2.32). As there are no non-trivial homomorphisms between objects
in D; and D-, this yields the contradiction. O
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Let now X be a smooth projective variety over a field k and wx its canonical
bundle. Often, wy is also called the dualizing sheaf of X, the reason for which
will be explained now.

First note that for any locally free sheaf M the functor Coh(X)— Coh(X)
given by Fr—=F ® M is exact. In particular, it immediately descends to an
exact functor of the derived categories D*(X) —D*(X), for * = b, +, —, which
will be denoted M ® ( ). Other exact functors, available on any triangulated
category, are given by the shift functors [i] : D*(X) —D*(X) with i € Z.

Definition 3.11 Let X be a smooth projective variety of dimension n. Then
one defines the exact functor Sx as the composition

wx®( ) [n]

D*(X) D*(X)

D*(X),
where * = b, +, —.

In view of the following result, Sx is called the Serre functor of X. (More
accurately, Serre functors are called Serre functors because they formalize Serre
duality.)

Theorem 3.12 (Serre duality) Let X be a smooth projective variety over a
field k. Then

Sx : DP(X) —— DP(X)
is a Serre functor in the sense of Definition 1.28.

More explicitly, Serre duality says that for any two complexes £°, F* € DP(X)
there exists a functorial isomorphism

*

Nee . Feo © HOmD(A)(E',f') 4N> HOmD(A)(f.,g' ®(.UX[TL]) .
It is more commonly stated as isomorphisms for any i € Z
Exti(go’]:o) ~ 5 Eth—i(]:o,go ® wX)*’

which is functorial in €% and F*. Use Ext’(£*,F*) = Homp4)(E*, F°[i]) to
confirm the equivalence of the two versions.

Proof One way to prove this is by using the standard Serre duality in the form
Ext’(F,wx) ~ H* *(X, F)* for a coherent sheaf F (cf. [45, I1.7]). This is indeed
a special case of the above assertion as H" *(X, F) = Ext" " (Ox, F).

Serre duality can also be seen as a particular case of the Grothendieck—Verdier
duality (see Section 3.4), the proof of which is given in [44]. O
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Serre duality for coherent sheaves as stated yields a quick proof for

Proposition 3.13 Suppose F and G are coherent sheaves on a smooth project-
we variety X of dimension n. Then

Ext'(F,G) =0 for i>n.
In other words, the homological dimension of Coh(X) is n.

Proof Simply note that Ext’(F,G) ~ Ext" "(G,F ® wx)* = 0 for negative

1—n.
The homological dimension of Coh(X) can indeed not be smaller than n, for
Eth(Ox,wX) EHOHI(O)(,O)()* #0. 0

Corollary 3.14 Suppose X is a smooth projective variety. Then for any two
compleves £*, F* € D*(X) one has RHom®(£*, F*) € D®(Ab).

Proof Use Corollary 2.68, ii) or rather the spectral sequences (3.1) and (3.2).
O

The following folklore result describes objects in the derived category of a
smooth curve. It is another particularly nice consequence of the proposition.

Corollary 3.15 Let C be a smooth projective curve. Then any object in DP(C)
is isomorphic to a direct sum @ &;[i], where the &; are coherent sheaves on C.

Proof We proceed by induction over the length of the complex. Suppose £° is
a complex of length k with H!(£®) = 0 for i < iy. Then use Exercise 2.32 to find
a distinguished triangle of the form

Ho(£%)[—io) e & H (E°)[1 — i)

with & of length k — 1 and with H*(EP) = 0 for i < iy.

If this distinguished triangle splits, then £* ~ &£ @ H%(£*)[—io] and the
induction hypothesis for £ allows us to conclude.

Thus it suffices to prove the vanishing Hom(Ef, H (E®*)[1 — ig]) = 0 (see
Exercise 1.38). Write £ ~ @,; H'(£7)[—i]. Then
Hom(Ey, H™ (E*)[1 — 40]) EB Ext! ™0 (HY(EY), H(E°)) = 0,

1>10

as the homological dimension of a curve is one. a

Exercise 3.16 Convince yourself that the proof applies more generally to any
abelian category of homological dimension < 1.

Also in the the next section Serre duality will serve as an important technical
tool. E.g. it will allow us to pass from cohomology groups like Hom(k(z), ) to
those of the form Hom( ,k(x)), which are easier to handle.
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3.2 Spanning classes in the derived category

The two propositions in this section describe the two most common spanning
classes in DP(X). Other more specific ones will be encountered in later chapters.

Proposition 3.17 Let X be a smooth projective variety. Then the objects of
the form k(z) with x € X a closed point span the derived category DP(X).

Proof See Definition 1.47 for the notion of a spanning class.
In order to prove the assertion, it suffices to show that for any non-trivial
F* e Db(X) there exist closed points x1,x2 € X and integers 1, i2 such that

Hom(F®, k(x1)[i1]) 20 and Hom(k(xz), F°[is]) # 0.

Applying Serre duality Hom(k(z), F*[i2]) ~ Hom(F*®, k(x)[dim(X) — i2])*, we
find that it is enough to ensure the existence of i; and x;.

This is now proven in complete analogy to the arguments in the proof of
Proposition 3.10, but this time, for a change, we use the spectral sequence (3.2)

EY? .= Hom(H ™4, k(z)[p]) = Hom(F*, k(z)[p + q]),
where HY? := HI(F*).
Since F* is non-trivial, there exists a maximal m such that H™ # 0. With this
choice of m all differentials with source E2>~™ are trivial. As negative Ext-groups
between coherent sheaves are always trivial, one has F? = 0 for p < 0 and hence

all differentials with target E2~™ are also trivial. Thus, E%~™ = Eg o
If we now choose a point = in the support of H™, then

Y = B = Hom(H™, k(x)) # 0
and hence Hom(F*, k(x)[—m]) # 0. O

There is another choice for a spanning class of the derived category of coher-
ent sheaves on a projective variety provided by the powers of an ample line
bundle. For the definition of an ample sequence see Definition 2.72. The geometric
realization of this concept is provided by the following

Proposition 3.18 Let X be a projective variety over a field. If L is an ample
line bundle on X, then the powers L', i € Z, form an ample sequence in the
abelian category Coh(X). See [15].

Proof By definition (cf. [45, I1.7]) an ample line bundle L has the property
that for any coherent sheaf F there exists an ng such that for any n > ng the
sheaf F @ L™ is globally generated. This means that

HY(X,F®L")®Ox —>> F®L"

is surjective. Tensoring with L=" and writing H°(X,F ® L") = Hom(L™™",F)
shows that the canonical map

Hom(L, F)® L' —> F
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is surjective for i < iy := —ng. Therefore, condition i) in Definition 2.72 is
satisfied.

To see ii), one invokes one of the fundamental theorems of Serre (cf. [45, IIT,
5.2]) saying that H(X,F ® L") = 0 for any ¢ > 0 and n > ng (the latter
depending on F), where L is an ample line bundle on a projective scheme over
a noetherian ring. This proves ii) right away.

Let F be a coherent sheaf on X. Then Hom(F, L?) is finite-dimensional. We
may suppose that L is very ample. Indeed, if not then pass to a very ample
power L* and prove the statement for the finite number of sheaves F @ L,
1=0,....k—1.

So, we might assume that for any closed point £ € X there exists a section
0+# s, € H'(X,L) with 0 = s,(z) € L(z). If 0 # » € Hom(F, L"), then there
exists a closed point € X with o(z) : F(x) — L*(x) non-trivial. Hence, ¢
is not in the image of the inclusion Hom(F, Li~') % Hom(F, L*) induced by
applying Hom(F, ) to the short exact sequence

‘S

0 Lt L L' z(s,) — 0.

As the spaces are all finite-dimensional, this only happens a finite number of
times before they become trivial, i.e. Hom(F, L?) = 0 for i < 0. This proves iii).

(The proof of the last part simplifies, if one restricts to smooth projective
varieties over a field. Then we may use Serre duality and Serre vanishing to see
that

Hom(F, L)) ~ HI™X)(X FO L @wx)* =0

for i < 0.) O

Corollary 3.19 If X is a smooth projective variety and L is an ample line
bundle on X, then the powers L', i € Z, form a spanning class in the derived
category DP(X).

Proof This is an immediate consequence of Propositions 2.73 and 3.18. We

have only to recall that Coh(X) has finite homological dimension, whenever X
is smooth (see Proposition 3.13).

Proposition 3.17 covers the case of zero-dimensional X, i.e. when X is a point.

O

At this point, the reader could directly pass to the next chapter, where the
important results of Bondal and Orlov on the classification of derived categories
of varieties with ample (anti-)canonical bundle are presented. The material of
Sections 3.3 and 3.4 on derived functors on DP(X) will only be needed from
Chapter 5 on (with one minor exception in the proof of Proposition 4.9).
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3.3 Derived functors in algebraic geometry

In the following we shall discuss all derived functors that will be needed in the
sequel. All assumptions will be carefully stated, but for certain details, we have
to refer to the literature.

Cohomology Let X be a noetherian scheme over a field k. The global section
functor

I': Qcoh(X) —— Vec(k), F —— I'(X,F)

is a left exact functor. Since Qcoh(X) has enough injectives (cf. Proposition
3.3), its right derived functor

RT : D*(Qcoh(X)) —— D™ (Vec(k))
exists. The higher derived functors are denoted
HY(X,F*) = R'T(F*).

For a sheaf F these are just the cohomology groups H*(X,F), i = 0,1,... and
for an honest complex F* they are sometimes called the hypercohomology groups
Hi (X, F*).

Since every complex of vector spaces splits, one has in fact

RI(F*) ~ P H (X, F*)[~i]

in D*(Vec(k)).

The following is a special case of a general result for sheaves of abelian
groups on noetherian topological spaces. Another generalization is provided by
Theorem 3.22.

Theorem 3.20 (Grothendieck) For any quasi-coherent sheaf F on a noe-
therian scheme X one has H'(X,F) =0 for i > dim(X). See [45, III, 2.7].

Together with Corollary 2.68 it shows that the functor RI' induces an exact
functor

RI' : D®(Qcoh(X)) —— DP(Vec(k)).
Let us next restrict the functor of global sections to the full subcategory of
coherent sheaves I' : Coh(X) — Vec(k).

Theorem 3.21 (Serre) If F is a coherent sheaf on a projective scheme X
over a field k, then all cohomology groups H' (X, F) are of finite dimension. See
[45, I, 5.2].

(In fact, it suffices that X is proper (cf. [43, III, 3.2.1]).) In particular, the
functor of global sections yields the left exact functor I' : Coh(X) — Vecy (k).
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However, its derived functor cannot be constructed directly, as Coh(X) does
not, in general, contain enough injectives. However, due to the theorem the right
derived functor

DP(X) —> DP(Vec,(k))
can be obtained as the composition of exact functors
DP(X) —— DP(Qcoh(X)) —— DP(Vec(k)).

Here one uses Corollary 2.68 which works despite the fact that Coh(X) does
not contain enough injective objects (cf. Remark 2.69, ii)). The existence of the
spectral sequence needed in its proof can be ensured by viewing any coherent
sheaf as a quasi-coherent one.

Note that under our assumption that X is noetherian, D(X) is equivalent
to the full subcategory of bounded complexes of quasi-coherent sheaves with
coherent cohomology (cf. Proposition 3.5). We summarize the above discussion
by the following diagram

D*+(Qcoh(X)) i D+ (Vec(k))
e Thm.3.20 =
DP(Qcoh(X)) DP(Vec(k))

DY (X) — 22 (e, (1)

Direct image Let f : X —Y be a morphism of noetherian schemes. The
direct image is a left exact functor

f+« : Qcoh(X) —— Qcoh(Y).

Again, we use that Qcoh(X) has enough injectives in order to define the right
derived functor

Rf.: D" (Qcoh(X)) — D (Qcoh(X)).

The higher direct images R'f.(F*®) of a complex of sheaves F* are, by
definition, the cohomology sheaves H!(Rf.(F*)) of Rf.(F*). In particular, to
any quasi-coherent sheaf 7 on X one associates the quasi-coherent sheaves R’ f, F
onY.
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If X is a noetherian scheme over a field k, then the global section functor
I': Qcoh(X) —Vec(k) is a special case of the direct image. Indeed, the direct
image f.F of a sheaf F under the structure morphism f : X — Spec(k) is
nothing but T'. So, in this case R'f,(F*) = H (X, F*).

From this point of view the following result naturally generalizes Theorem 3.20.
In fact, using [45, III, 8.1] it can be easily deduced from it.

Theorem 3.22 For a quasi-coherent sheaf F on X and a morphism f :
X —=Y of noetherian schemes the higher direct images R'f.F are trivial for
1> dim(X).

Thus, the higher direct image functor induces an exact functor (cf.
Corollary 2.68)
Rf. : D’(Qcoh(X)) — DP(Qcoh(Y)).
To stay in the coherent world, one has to use the following coherence criterion
which generalizes Theorem 3.21.

Theorem 3.23 If f : X —Y is a projective (or proper) morphism of noe-
therian schemes, then the higher direct images R'f.(F) of a coherent sheaf F
on X are again coherent. See [45, III, 8.8] or [43, III, 3.2.1].

Thus, using Proposition 3.5 once more we obtain for any proper morphism
f : X —Y of noetherian schemes the right derived functor

Rf, : DP(X) — DP(Y)

as the composition of DP(X) —=DP"(Qcoh(X)) and the derived direct image for
quasi-coherent sheaves Rf. : D"(Qcoh(X)) —=DP(Qcoh(Y)).

Thus, summarizing the discussion by a diagram similar to the one given above
for the global section functor we have

Rf.

D*(Qcoh(X)) D*(Qeoh(Y))
- Thm.3.22 e
D"(Qcoh(X)) D"(Qcoh(Y))
D‘:(X) :hm.3.23 va(Y)_

Sometimes, another f,-adapted class is useful. Recall that a sheaf F is flabby
if for any open subset U C X the restriction map F(X)—F(U) is surjective.



74 Derived categories of coherent sheaves

The following lemma collects the standard facts about flabby sheaves. Together
with Proposition 3.3, it immediately shows that the class of all flabby sheaves is
f«-adapted.

Lemma 3.24 Any injective Ox-sheaf is flabby. Any flabby sheaf F on X is
fe-acyclic for any morphism f : X —Y, i.e. Rif.(F) = 0 for i > 0, and,
moreover, f.JF is again flabby.

Proof For the first assertion see [45, III.2].

The second one uses that R'f.(F) is the sheaf associated to the presheaf
Ut—H'(f~2(U), Fl-1(7)) (see [45, II1.8]) and that a flabby sheaf is acyclic in
the sense that the higher cohomology is trivial (see [45, IIL.2]). O

For a composition

g
X —Y —7

of two morphisms one knows that (g o f). = g« o fi, from which we want to
conclude

R(go f). ~ Rg. o Rf. : D°(Qcoh(X)) —> D"(Qeoh(2)).

In order to apply Proposition 2.58, we have to ensure the existence of an fi-

adapted class Z C Qcoh(X) such that f.(Z) is contained in a g.-adapted class.
We let Z be the class of injective sheaves. Then 7 is f, adapted, for Qcoh(X)

has enough injectives (see Proposition 3.3). As the direct image of a flabby sheaf

is again flabby, f.(Z) is contained in the g.-adapted class of all flabby sheaves.
Applying Proposition 2.66 leads to the Leray spectral sequence:

Y = R, (Rf.(F*) = RP (g0 f).(F*). (33)

Any morphism f : X —Y of noetherian schemes over a field £ may be composed
with the structure morphism Y — Spec(k). This yields

RI(Y. )oRf. ~RT(X, )
and (3.3) becomes
EDT = HP(Y, RUf.(F*)) = HPT (X, F*).

Another interesting special case of the Leray spectral sequence is deduced by
considering the case that f is the identity. Then

EY? = RPg, HI(F*) = RPtig, F* (3.4)
and, even more special, for g : X =Y —Spec(k) one obtains

EPY = HP(X, HY(F*)) = H'TI(X, F*). (3:5)
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Local Homs Let F € Qcoh(X). Then
Hom(F, ):Qcoh(X) —— Qcoh(X)

is a left exact functor.
Recall that Hom/(F, ) is the sheaf

U H——> HOHl(f|U,5‘U)
of Ox-modules (no sheafification needed here!) and that for F and £ (quasi-)
coherent the sheaf Hom(F, &) is also (quasi-)coherent (see [45, IL.5]).

Due to the existence of enough injectives in Qcoh(X) (we always assume that
X is noetherian), the derived functor

RHom(F, ):D'(Qcoh(X)) — D" (Qcoh(X)) (3.6)
exists. By definition
Ext'(F, &) == R"Hom(F,E)

for any quasi-coherent sheaves £ and F. At least for coherent sheaves F, the
definition is local in the sense that the stalk can be described by (cf. [45, II1.6])

Ext'(F, €)= Extiy, (Fu, ).

This is essentially due to the commutativity of the diagram

Hom(F, )
Qcoh(X) QCOh(X)
Mod(Ox ) Mod(Ox,.)
Hom(F,, )

for any locally free sheaf F. In particular, Ext*(£,F) are coherent if & and F
are so.
Restricting (3.6) to coherent sheaves yields the functor

RHom(F, ):DT(X) — DT (X).

Recall that for a non-regular local ring A the Ext’y(M, ) might be non-trivial
even for 7 >> 0. Thus, only for a regular scheme X do we obtain a functor between
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the bounded derived categories (cf. Proposition 3.26 below). Thus,

RHom(F, )
D*(Qcoh(X)) D*(Qcoh(X))
~ F coheren -
D (X) ———— D*(Y)
~ X regular ~
Db (X) DY(X).

The construction generalizes to complexes F* € D™ (X). One first defines for
a complex F*, that is bounded above, the exact functor

Hom®*(F*, ):K"(Qcoh(X)) — K" (Qcoh(X)),

Hom' (F*,£°) = [ [ Hom(FP,£77) with d = ds — (—1)'dy.
In the sequel, we shall need the following fact which is readily deduced from the

corresponding local statements for modules over a ring (cf. Remark 2.57, i)).

Lemma 3.25 Let £° be a complex of injective sheaves. If F* or E® is acyclic,
then Hom?®(F*,E®) is acyclic. See [44, IL.3]. O

The assertion for acyclic £° shows that the class of complexes of injective
sheaves is adapted for the functor Hom®(F*®, ). Hence, the right derived functor
exists (see Remark 2.51):

RHom(F*, ):D"(Qcoh(X)) —— D' (Qcoh(X)).

In order to see that the functor descends to the derived category in the left
argument, one applies the lemma for F* acyclic. (We may always assume that
E*® is a complex of injectives.) Then Lemma 2.44 shows that we have a bifunctor:

RHom( , ):D (Qcoh(X))°? x D*(Qcoh(X)) —— DT (Qcoh(X)),

which we use to introduce
Ext'(F*,E%) := R"Hom(E®, F*).

As has been mentioned earlier, there are not many projective objects in the
category of coherent sheaves. However, for the purpose of computing local Exts
locally free sheaves are enough. More precisely, if F* is a complex of locally free
sheaves F!, then RHom(F®, ) can be computed as Hom(F®, ). This can be
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deduced from the local statement that says that for any complex M*® of free
modules over a local ring A the cohomology RHom(M?®, ) can be computed as
Hom(M?®, ) (free modules are projective!).

Again, for regular schemes one can work with the bounded categories due to
the following

Proposition 3.26 If X is reqular, then any F* € DP(X) is isomorphic to a
bounded complex G* € DP(X) of locally free sheaves G'.

The key ingredient for the proof is the fundamental fact that on regular
schemes any coherent sheaf G admits a locally free resolution of finite length
n. In fact, one can always assume n < dim(X).

Exercise 3.27 Try to imitate the sketch of the proof of Proposition 2.35 and
prove the assertion of the above proposition.

Thus, the situation may be summarized by the diagram

RHom

D™ (Qcoh(X))° x D*(Qcoh(X)) D*(Qcoh(X))
D-(X) x D*(X) D+ ()
~ X regular ~
DP(X)°P x DP(X) Db (X).

Similar to Example 2.70 one shows the existence of the following spectral
sequences

P = Eat? (F*, HI(E")) = Eat?H1(F*, £°) (3.7)
DT = Ext? (H79(F*),£%) = Ext¥9(F*, £°). (3.8)

Trace map The last observations allow us to define the trace map
trge : RHom(E*,E%) —— Ox

for any £* € DP(X).

For simplicity we will assume that X is regular and replace £° by a bounded
complex of locally free sheaves. Then RHom(E®,E®) ~ Hom*(E°*,E*).

By definition Hom®(£°,£%) = @, Hom(E", £") and the usual trace maps trg: :
Hom(E4, EY) — Ox for the locally free sheaves £¢ give rise to the trace map

trgo = @(—1)itrgi .
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Exercise 3.28 Prove that trge does define a complex morphism.

Dual We define the dual F*V of a complex F* € D™ (Qcoh(X)) of quasi-
coherent sheaves as

F*' := RHom(F*,0x) € D" (Qcoh(X)).

F*' := RHom(F*,0x) € DT (Qcoh(X)).

So, in general even for a sheaf F it is not simply the dual sheaf Hom(F, Ox).
E.g. if F is a coherent sheaf on a smooth variety with codim(supp(F)) > d, then
FV is a complex concentrated in degree > d, i.e. HI(F") = 0 for ¢ < d. This
follows either from the local statement for Ext?(M, A) (cf. [77, 15.E]) or from an
argument using Serre duality (cf. [53, 1.1.6]).

The dual of the structure sheaf of a subvariety can be computed explicitly (see
Corollary 3.40).

If we let F* be a complex

[ ]:i—l - > ]:z - > ]:i—i—l - s> ...
with locally free sheaves F*, then F*" is obtained as

... Hom(F* Ox) —— Hom(F!,Ox) — Hom(F 1, 0x)....

If X is regular, then F*Y = RHom(F*,Ox) € D*(X) for any F* € D*(X).

Tensor product Let us again start out with the sheaf version of the tensor
product before explaining the more general notion of the derived tensor product
of two complexes. So, let F € Coh(X). The tensor product defines the right
exact functor

F®( ):Coh(X) ——= Coh(X)

and we are interested in its left derived functor. To simplify the argument, we
shall right away assume that X is a projective scheme over a field k.

Any coherent sheaf £ admits a resolution by locally free sheaves or, in other
words, for any £ there exists a surjection

E0 —== &

with £° locally free (see, e.g. Proposition 3.18). Moreover, if £° is an acyclic
complex bounded above with all £ locally free, then F @ £°® is still acyclic.
(Reduce it to the local situation of an exact complex of free modules which stays
exact if tensored by any module.)
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These two facts show that the class of locally free sheaves in Coh(X) is adap-
ted for the right exact functor F ® () (cf. Remark 2.57). Thus, the left derived
functor

F@F( ):D7(X) —= D (X)

exists.
By definition,

Tori(F,€) == H (Fale).

If X is smooth of dimension n, then any coherent sheaf £ admits a locally free
resolution of length n (cf. Proposition 3.26). Hence, in this case Zor;(F,&) = 0
for i > n. Thus, by Corollary 2.68

For( )
D (X) — = D (X)

X smooth

DP(X) — s Db(X).

Let us now pass to the more general situation. Consider a complex F*® €
K~ (Coh(X)) that is bounded above and define the exact functor

F*®( ):K~(Coh(X)) — K~ (Coh(X))

(Free) = P FPeE with d=dr @1+ (-1)'1 @ de.
pF+q=i

Thus, by definition F* ® £° is the total complex of the double complex
K**® with K7 = FP @ £9 and the two differentials di = dr ® 1 and
di = (71)p+q1 ® dg.

In order to define the derived functor, one verifies that the subcategory of
complexes of locally free sheaves is adapted to F* @ (). Since Coh(X) contains
enough locally free sheaves for X projective, it remains to check that the image
of an acyclic complex £° with all £ locally free is again acyclic. To see this, one
uses the spectral sequence

EYY = HYHG (K**) = HPY(F* @ &%),

which is a consequence of Proposition 2.64 with the two filtrations interchanged.
For £° acyclic and all £ locally free the complex FP ® £° is acyclic for any p
(this has been used earlier). Hence, H% (FP ® £°) = 0 and, therefore, E5'? = 0
for all ¢ and all p. Therefore, also F* ®E® is exact. Thus, the left derived functor

Feol():D (X)) —= D (X)

exists.
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The analogous spectral sequence interchanging d; and dj; shows that for a
complex of locally free sheaves £°* and an acyclic complex F* the tensor product
F* ® E® is again acyclic. In other words, the induced bifunctor

K~ (Coh(X)) x D~(X) —= D~ (X)

need not be derived in the first factor and descends to the bifunctor ®* for the
derived categories (cf. Lemma 2.44).

If X is smooth, then the functor is defined for the bounded derived categor-
ies. Indeed, any bounded complex of coherent sheaves is quasi-isomorphic to a
bounded complex of locally free sheaves (see Proposition 3.26) and the tensor
product of two of those is again bounded. Hence,

D (X) x D~ (X) —— D (xX)

J )

DP(X) x DP(X)

Computing the derived tensor product F*®%E® as the ordinary tensor product
of complexes of locally free sheaves quasi-isomorphic to F* (respectively £°)
yields the following functorial isomorphisms

Foalgs ~ g ol 7o
Fr ol (£ ol ¢*) ~ (F* o &%) ok ¢°.
Generalizing the above definition of the sheaf Tor one sets
Tor;(F*,E%) = H ' (F* @ &)
which can often be computed via the spectral sequence
ES =Tor_,(HU(F*),E%) = Tor_(p1q)(F*,E°). (3.9)

The argument that worked for right derived functors does not apply literally, as
we have not said anything about Cartan-Eilenberg resolutions in this context
(cf. Proposition 2.66). But an easy ad hoc argument goes as follows: We may
assume that £° is a complex of locally free sheaves. Then Zor_,(H?(F*),E®) can
be computed as the p-th cohomology of the complex H?(F®) ® £°. Similarly,
Tor_(p4q)(F*,E®) can be computed as the (p+ ¢q)-th cohomology of the complex
F* ® E°. The latter is the total complex of the natural double complex and the
claimed spectral sequence corresponds to the standard spectral sequence for a
double complex (see Proposition 2.64).

Inverse image Let f: (X,0x)—(Y,Oy) be a morphism of ringed spaces.
Then

f* : Shoy (Y) —_— Shox (X)
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is by definition the composition of the exact functor
f~1:Shp, (Y) —— Sh;1(0,)(X)
and the right exact functor
Ox ®f-1(0y) () :Shp-1(0,)(X) —— Shp, (X).

Thus, f* is right exact and if Ox ®)Lf—1(oy) () is the left derived functor of
Ox fr-1(0y) (), then

Lf* = (Ox ©F 10y, () 0 f71:D7(¥) —> D (X).

To be precise, the arguments of the previous paragraph are not quite sufficient
to derive the tensor product Ox ®}%,1 (©y) (), as we only explained how to
derive the tensor product of Ox-modules (on a projective scheme). But the
more general situation is handled in the same way. Moreover, in most of our
applications we don’t even have to derive f*, as f is often flat and, therefore, f*
exact.

Similarly to the spectral sequence (3.9) one obtains

P = [P f*(H(E")) = LV f*(€°), (3.10)

where by definition L? f*(F*) = HP(Lf*(F*)).
Let us mention two useful results that will serve as technical tools in the sequel.

Lemma 3.29 Leti: T “— X be a closed subscheme. Then for any F*® €
DP(X) one has

supp(F*®) NT = supp(Li*(F*)).

Proof For the definition of the support of a complex see Definition 3.8.

One direction is easy. Indeed, if = ¢ supp(F*®), then the restriction F*|y of
F* to an open neighbourhood x € U C X is trivial. Hence, also Lij;(F*|v) =
(Li*(F*))|unr is trivial, where iy : UNT < U. Thus, x & supp(Li*(F*)).
This proves supp(Li*(F*)) C supp(F*).

Conversely, let x € supp(F*®). If iy is maximal with o € supp(H (F*)), then
Toro(Ho (F*), k(x)) # 0. As Tor_,(H(F*),k(z)) = 0 for p > 0, the spectral
sequence

EY® = Tor_y(HU(F*), k(2)) = Tor(p4q) (F*, k(x)) = H'TI(F* (2))

shows H(F*(z)) # 0. In particular, F*(z) # 0, where F*(x) denotes the
derived pull-back of F* under the embedding of the closed point {z} <= X.

Since deriving the composition of the pull-backs is isomorphic to the com-
position of the derived pull-backs, one has F®(z) ~ (Li*(F*))(z). Hence,
x € supp(Li*(F*)). o
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Exercise 3.30 Prove the following fact, which was tacitly used in the above
proof: Let i, : {r} &= X be the embedding of a closed point. Then for any
complex F* one has F*(z) := LitF*® # 0 if and only if « € supp(F*).

For the following lemma consider a morphism S—X. If x € X is a closed
point, we denote by i, : S, <= S the closed embedding of the fibre over z.

Lemma 3.31 Suppose Q € DP(S) and assume that for all closed points x € X
the derived pull-back LitQ € DP(S,) is a complex concentrated in degree zero,
i.e. a sheaf.

Then Q is isomorphic to a sheaf which is flat over X.

Proof In order to verify the claim we will apply the spectral sequence (3.10)
to the inclusion i, and obtain

ER? = HP(LiyHY(Q)) = HPTI(Li} Q).

By assumption the right hand side is trivial except possibly for p + ¢ = 0.
Choose m maximal with H™(Q) # 0. Then there exists a closed point z € X
with ESY = HO(Li*H™(Q)) # 0 (this is just the ordinary pull-back). But this
non-triviality survives the passing to the limit in the spectral sequence and hence
m = 0. For the same reason, Ey~' = H~1(LitH°(Q)) with € X arbitrary also
survives and must, therefore, be trivial. This shows that the sheaf H°(Q) is
actually flat over X.

0 0 0 0 0
* * * Eg’m 0
* * * * 0

(For the reader’s convenience we recall the result from commutative algebra
behind this: Let A— B be a local ring homomorphism and M a B-module. In
order to show that M is A-flat, one has to verify that for any finitely generated
ideal @ C A the map a ® M — M is injective. Of course, it suffices to show
this for @ = m, the maximal ideal of A. Suppose 0 —>= N7 —>= No — M —=0 is
a short exact sequence of A-modules.

The analogue of H~1(LizH°(Q)) = 0 for H°(Q) replaced by M yields the
injectivity of Ny /mN; —= Ny /mN,. If Ny is A-flat, then No @ m — N is inject-
ive. Both statements together and the snake lemma readily yield the injectivity
of M @m—=M.)

Also note that the flatness of H°(Q) over X implies that the higher derived
pull-backs E2® = HP(Li*H(Q)) are trivial for p < 0.

The last thing one has to check is that there is no non-trivial cohomology
below, i.e. that H?(Q) = 0 for ¢ < 0. Suppose not; then we choose m maximal
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among all ¢ < 0 with H?(Q) # 0 and z a closed point x € X in the support of

0 o0 B 0
0 0 0 0
* * Ey™ 0
* * * 0

Since all B, = H™P(LizH9(Q)) with ¢ > m and p < 0 are trivial, this
would again yield the contradiction E™ = H™(Li%Q) = H°(Li:H™(Q)) # 0 in
the limit. o

Compatibilities i) Let f : X—=Y be a proper morphism of projective
schemes over a field k. For any F* € DP(X), £* € DP(Y) there exists a natural
isomorphism (projection formula):

Rf(F*) @F & —= Rf.(F* @ Lf*(£*)). (3.11)

This is a consequence of the classical projection formula for a locally free sheaf £
and an arbitrary sheaf F, which states f.(F ® f*E) ~ f.(F) ® € (cf. [45, I1.5]).

ii) Let f : X—=Y be a morphism of projective schemes and let F* E® €
DP(Y). Then there exists a natural isomorphism

Lf*(F*) @Y Lf*(€*) — Lf*(F* &l €°). (3.12)

Indeed, replacing £° and F* by complexes of locally free sheaves allows us to
compute the derived tensor products and the derived pull-back as ordinary ones
(the pull-back of a locally free sheaf is again locally free). But then the claim
reduces to the classical statement for sheaves f*F ® f*€ ~ f*(F ®¢&).

iii) Let f : X —Y be a projective morphism. Then Lf* - Rf,, i.e. there
exist functorial morphisms

Hom(Lf*F* %) —> Hom(F*, Rf.E*).

Once more, one may suppose that F* is a complex of locally free sheaves and
that £° is a complex of quasi-coherent injective sheaves. In this case, the derived

functors are just the usual ones and the adjunction follows from the standard
one f* 4 f, (cf. [45, IL5]).
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iv) For simplicity, we will assume that X is smooth and projective over a field
k. Then there are the following compatibilities of derived local Hom and derived
tensor product. All complexes involved are supposed to be bounded complexes
of coherent sheaves.

RHom(F*, %) @L G* ~ RHom(F*,£* @ G*) (3.13)
RHom(F®, RHom(E*,G*)) ~ RHom(F* % £°,G*) (3.14)
RHom(F*®,£* @ G*) ~ RHom(RHom(E*, F*),G*). (3.15)

)

(Note that we need the smoothness, e.g. in order to ensure that RHom/(F*,E®
is again bounded above so that the tensor product can be formed.) All these
isomorphisms are rather obvious, once F*,£®, and G*® are chosen to be bounded
complexes of locally free coherent sheaves (cf. [45, IL.5]).

Most important for us is the special case of the derived dual:

F*' @l € ~ RHom(F®,0x) @ £° ~ RHom/(F*,E°).

In other words, RHom(F®, ) is isomorphic to the functor F*¥ @ () ~
RHom(F*,0x) &% ().

If F* is a complex of locally free coherent sheaves, then Hom(F®,Ox) is
isomorphic to the complex that is obtained by genuinely dualizing the com-
plex ... —Fi"l > Fi s Fi*l _~ and the tensor product need not be
derived. Thus,

RHom(F*, %) ~ @ Hom(F?,0x)® &Y.
q—p=i

We continue to assume that X is smooth and projective over a field k. Then
the double dual of a complex F* € DP(X) is canonically isomorphic to F*. (Once
more, we need the smoothness to ensure that the dual is again bounded above.)
In other words,

F* ~ F*"V ~ RHom(RHom(F*,0x), Ox).

Indeed, we may assume that F* is a bounded complex of locally free coherent
sheaves F*. Then the double dual is obtained by double dualizing the sheaves
F'. But for a locally free sheaf the double dual is clearly naturally isomorphic
to the original sheaf.

Let us also mention the following consequence.

Lemma 3.32 For any F* € D®(X) one has
supp(F*) = supp(F*").
Proof Consider the spectral sequence (see (3.8), p. 77)
EYT = ExtP(H™UF*),0) = ExtPTI(F*,0) = HPTI(F*Y).
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From this one immediately concludes supp(F*") C supp(F*). Similarly, using
F*YV ~ F* one shows the other inclusion and thus obtains equality. |

v) Let F* € D™ (X). Then by definition of the sheaf hom Hom® one has
T'oHom®*(F*, )= Hom®(F*, ). Hence,

RT' o RHom(F*®, )= RHom(F*, ).

(Well, one has to verify that the image of a complex £° of injective sheaves under
Hom(F*®, ) is I'-acyclic. But this holds true [40].) An immediate consequence
of this is the spectral sequence that relates local and global Ext:

BT = HP(X, Eat1(F*, %)) = Ext? U(F*,*). (3.16)

vi) Let f: X —Y be a morphism of projective schemes and let F* € D~ (Y)
and £* € D(Y). Then there exists a natural isomorphism

~

Lf* RHomy (F*,E*)

RHomx (Lf*F*, Lf*E®). (3.17)

For the proof replace again all complexes by complexes of locally free sheaves.
vii) Consider a fibre product diagram

Xx,Y —> Yy

.| if

X —>7

with u : X —Z flat and f : Y — Z proper. Then flat base change asserts the
existence of a functorial isomorphism:

W Rf.F* —> Rgv*F* (3.18)

for any F* € D(Qcoh(Y)).

As u and, therefore, v are flat, both functors v* and v* are exact and need
not be derived. Furthermore, the formula also yields canonical isomorphisms
u*Rif, F® ~ Rig,v*F* for any i.

Remark 3.33 i) Even without the flatness assumption one has a natural map
w*Rf F®*— Rg,v*F*. Thus it suffices to prove that for u flat the induced
cohomology maps are isomorphisms (see [45, ITI, 9.3]).

For a variant of the base change formula with f smooth and proper, but «
arbitrary see [14, Lem.1.3].

ii) For completeness sake and later use we recall one of the fundamental res-
ults comparing higher direct images with fibrewise cohomology. For this, we let
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f+ X—=Y be an arbitrary proper morphism of varieties and F a coherent sheaf
on X. Suppose

[ — dimHi(f_l(y)v}—‘f_l(y))

is a constant function on the set of closed points of Y. If Y is integral, then
R'f.F is locally free and the natural morphisms

Rf.F @ k(y) A H(f 1) Flg-1))

are bijective. See [45, III, 12.9].

Let us consider the special case of the product X x Y, i.e. Z = Spec(k), with
the two projections

X xY

X/ KY.

For F* € DP(Y) flat base change yields
@p*F* ~ RT(Y,F*) ® Ox.
From this and projection formula (3.11), one deduces the Kiinneth formula: for
F* €DP(Y) and €°* € DP(X)
RT(X x Y,q*E* @ p* F*) ~ RT(X,£®) @ RT(Y, F*).

Note that the derived tensor product on the left hand side is in fact an ordinary
tensor product.

3.4 Grothendieck—Verdier duality

In some sense, Grothendieck—Verdier duality is just another compatibility
between the geometric derived functors, but it is not at all a formal consequence
of the definitions as most of the ones discussed in the previous section.

For the most general version and the proof we have to refer to the literature,
e.g. [32, 44].

Let f : X —Y be a morphism of smooth schemes over a field k of relative
dimension dim(f) := dim(X) — dim(Y"). We introduce the relative dualizing
bundle

wf i =wx ® ffwy.

Theorem 3.34 For any F* € DP(X) and £* € DP(Y) there exists a functorial
isomorphism

Rf.RHom(F*,Lf*(£°%) @ wy[dim(f)]) ~ RHom(Rf.F*,E®). (3.19)
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Note that, since wy is locally free, the tensor product on the left hand side of
(3.34) is indeed underived. Let us also introduce

JDNY) = DV(X),  £* > Lf*(E%) @ wyldim(f)]
Corollary 3.35 The functors Lf*, f' : DP(Y) —=DP(X) are left, respectively
right adjoint to Rf. : DP(X)—=DP(Y), i.e.

Lf*4Rf. A f.
Proof One applies global sections to both sides of (3.19) and uses
RI'o Rf, ~ RI' and RI o RHom ~ RHom.
Taking cohomology in degree zero then yields
Hompy(x) (F*, Lf*(E°%) @ wyldim(f)]) ~ Hompp vy (Rf.F*, E)
as asserted. O
If we denote by Dy is the dualizing functor
F* —— RHom(F*,wx[dim(X)]) = F*¥ ® wx[dim(X)],
then
f'~DxoLf* oDy
Moreover, the Grothendieck—Verdier duality can be equivalently expressed as
Rf. oDx ~ Dy o Rf,. (3.20)
Exercise 3.36 Prove that (3.20) is indeed equivalent to (3.19).
A special case of (3.20) is
Rfwx[dim(X)] ~ (Rf.Ox)" ® wy[dim(Y)].

Remarks 3.37 i) Grothendieck—Verdier duality, e.g. in the form of (3.20),
holds in much broader generality. What has to be changed is the definition of the
dualizing functor Dx. It has to be replaced by F*+—= RHom(F®, Kx), where
Kx is the dualizing complex. Tt turns out that Kx always exists (we are sloppy
here by not specifying where it lives). Moreover, the variety X is Gorenstein if
and only if Kx is a line bundle in degree —n. Also, X is Cohen—Macaulay if and
only if Kx is (isomorphic to) a coherent sheaf. See [44, V.9].

ii) Classical Serre duality (see [45, I1.7]) is a special case of Grothendieck—
Verdier duality. Indeed, applied to f : X —=Spec(k), the theorem yields
canonical isomorphisms

Hompy (x) (F*, wx [dim(X)]) ~ Homy (RT(F*), k).

In particular, Ext’(F,wx) = H" (X, F)* for any coherent sheaf F on X.
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Also Serre duality for derived categories (see Theorem 3.12) can be deduced
from it: Again we consider the projection f : X —Spec(k). If £*, F* € D?(X),
then

HOI’IlDb(X) (.7:., E* Quyx [dlm(X)])
~ Hompp(x)(RHom(E®, F*),wx[dim(X)]) (use (3.15))
~ Hompp (gpec(r)) (R (RHom(E*, F*)), k) (Cor. 3.35)
~ Hompp(x)(E°, F°)".
iii) The derived categories DP(X) and DP(Y") of two smooth projective varieties

X, respectively Y over k are endowed with Serre functors Sx, respectively Sy
(see Theorem 3.12). By definition,

f!ﬁ»S’XOLf*OS;I

which yields yet another interpretation of f*.

In fact, the existence of the left adjoint allows us to conclude immediately
that Sx o Lf* o S;l is right adjoint of Rf. (see Remark 1.31). Thus, strictly
speaking Corollary 3.35 does not really require the full Grothendieck—Verdier
duality; Serre duality in the form of Theorem 3.12 is enough.

Let us pass to the case of a closed embedding ¢ : X <= Y of codimension
¢ of smooth varieties X and Y. If we keep the definition of the relative dualizing
sheaf w; := wx ® wi-|x as in Theorem 3.34, then (3.19) yields

Corollary 3.38 Leti: X & Y be a smooth subvariety of codimension c
of a smooth projective variety. For any F* € D*(X) and any £* € DP(Y) there
erists a functorial isomorphism

Homy (F*, Li*(€°) ® w;[—¢]) ~ Homy (i, F*,E®).

Proof Instead of viewing this as a special instance of the Grothendieck—Verdier
duality, it can be proved directly by applying the derived version of Serre duality
twice and using Li* - i,. (Note that the direct image i, need not be derived for
a closed embedding.) Indeed,

Homy (i, F*,E°®)

~ Homy (€°*,1.F* @ wy [dim(Y)])* (Serre duality on Y)

(Li*(E%), F* @ i*wy [dim(Y)])* (use Li* 4iy)

~ Homx (F* @ i*wy [dim(Y)], Li*(£°) @ wx [dim(X)]) (Serre duality on X)
~ Homx (F*, Li*(£*) @ wx @ wy|x[—¢]).

~ Homy

O

Exercise 3.39 Give a proof that does not use Serre duality and, in particular,
avoids the hypothesis Y projective.
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In particular, this result allows one to compute the dual of the structure sheaf
of a smooth closed subvariety.

Corollary 3.40 Suppose i : X = Y is a smooth closed subvariety of
codimension ¢ of a smooth variety Y. The derived dual of i,Ox is given by

(i.0x)" ~i.wx @ Wi [—c].
Proof It suffices to show that there are isomorphisms
HOIIly(g.7 (Z*Ox)v) ~ Homy(g°,i*wx ® UJ;}[—CD),

which are functorial in G* € DP(Y).
This follows from

Homy (G*, (i.Ox)") ~ Homy

~ Homy

Li,0x,0y) (use (3.14))
is ( *),Oy) (projection formula)
Li*(G®),wx ® wi|x[—¢]) (Cor. 3.38)

~ Homy (G*, i.wx @ wy [—¢c]) (use Li* H1i,).

~ Hom x

(g°
(L
(
(

O

Examples 3.41 If D C Y is a divisor, then together with the adjunction
formula wp ~ (wy ® O(D))|p the corollary says (i.Op)¥ = i.Op(D)[—1].

Exercise 3.42 Leti: X = Y be a smooth closed subvariety of codimen-
sion ¢ > 1 of a smooth variety Y. Show that the derived dual Ty of its ideal
sheaf Zx satisfies

Oy ifk=0
HANIY) = dwx @wh  ifk=c—1
0 otherwise.

Notational convention As we will almost exclusively work on the level of
derived categories and only the derived versions of the classical functors will
make sense there, we shall in the sequel write f. : DP(X) —=DP(Y) when Rf. is
meant. Similarly, we write F* ® £°® for the derived tensor product of two objects
E®, F* in the derived category DP(X). Analogously, RHom becomes Hom and
Lf* becomes f*.



4

DERIVED CATEGORY AND CANONICAL
BUNDLE - I

It turns out that the complexity of the derived category of a projective variety X
depends very much on its geometry. This chapter is devoted to results by Bondal
and Orlov which in particular show that for varieties with ample (anti-)canonical
bundle the bounded derived category of coherent sheaves determines the variety.
This will be proved in Section 4.1. Except for the case of elliptic curves, this
settles completely the classification of derived categories of smooth projective
varieties in dimension one.

In Section 4.2 we present a description of the group of autoequivalences of
the bounded derived category of such varieties again due to Bondal and Orlov.
The complexity of the triangulated category DP(X) is reflected by the group
of autoequivalences of DP(X). Thus, these results say that derived categories of
coherent sheaves on projective varieties with ample (anti-)canonical bundle tend
to be easier than those for, e.g. abelian varieties or K3 surfaces. We will make
this more explicit in later chapters.

We start out with the following general statement that applies to any smooth
projective variety over a field k.

Proposition 4.1 Let X and Y be smooth projective varieties over a field k. If
there exists an exact equivalence

~

D’(X) — D"(Y)
of their derived categories, then
dim(X) = dim(Y).
Moreover, their canonical bundles wx and wy are of the same order.

Proof The order of wx is the smallest positive integer m € Z such that w?}m
is isomorphic to the trivial bundle. The assertion of the proposition includes the
case of infinite order.

Since both varieties are smooth projective, the derived categories D?(X) and
DP(Y) come with natural Serre functors, e.g. Sx(F®) = F* ® wx|[dim(X)] for
any F* € D(X) (cf. Theorem 3.12). Moreover, Lemma 1.30 tells us that any
equivalence F : D?(X) —=DP(Y) commutes with Sx and Sy-.
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Fix a closed point z € X. Then k(x) ~ k(z) ®wx ~ Sx (k(z))[— dim(X)] and,
hence,

X)], since F' is exact
X)], since FoSx ~SyoF
= F(k(z)) @ wy [dim(Y) — dim(X)].

o

T &
B

~— —~

Since F' is an equivalence, F(k(z)) is a non-trivial bounded complex. If ¢ is
maximal (respectively minimal) with H!(F(k(z))) # 0, then we find (using that
tensoring with the line bundle wy commutes with cohomology):

0 # H'(F(k(x))) = H' (F(k(x)) ® wy [dim(Y) - dim(X)])
~ Hierim(Y)fdim(X) (F(k(x))) ® wy

and hence 0 # HHdMY)=dim(X)([(k(z))), which contradicts the maximality
(respectively minimality) if dim(Y) — dim(X) > 0 (< 0, respectively). Hence,
dim(X) = dim(Y) =: n.

Suppose, wk =~ Ox. Then S%[—kn] ~ id and hence

F~loSE[—kn]o F ~ S%[—kn] ~id.
The latter clearly means S¥[—kn] ~ id and, therefore, w¥ ~ Oy-. a

Remark 4.2 Later we shall give another argument using the existence and
uniqueness of the Fourier-Mukai kernel. See Corollary 5.21.

4.1 Ample (anti-)canonical bundle

It turns out that for smooth projective varieties with ample (anti-)canonical
bundle wy the geometry of X is encoded by the derived category DP(X) in
a rather direct way. Before proving that DP(X) actually determines X, let us
show how to characterize certain geometric structures, like points or line bundles,
intrinsically as objects in the derived category.

Definition 4.3 Let D be a k-linear triangulated category with a Serre functor
S. An object P € D is called point like of codimension d if

i) S(P) =~ Pld],
ii) Hom(P, P[i]) = 0 for i <0, and
iii) k(P) := Hom(P, P) is a field.

An object P satisfying iii) is called simple. As we continue to assume that all
Hom’s are finite-dimensional, the field k(P) in iii) is automatically a finite field
extension of k. So, if k is algebraically closed, it is just k.
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Exercise 4.4 Suppose X is a smooth projective variety. Show that any point
like object in DP(X) is of codimension d = dim(X).

A sheaf F on X is simple if Hom(F, F) is a field. Show that any simple sheaf
F on a variety X with wx ~ Ox defines a point like object in D?(X).

Lemma 4.5 Suppose F* is a simple object in DP(X) with with zero-
dimensional support. If Hom(F*®, F°*[i]) =0 fori < 0, then

F* ~ k(x)[m]
for some closed point x € X and some integer m.

Proof Let us first show that F* is concentrated in exactly one closed point.
Otherwise J* could be written as a direct sum F*® ~ F? & F3 with F7 2 0,
j =1,2 (see Lemma 3.9). (The extra information that supp(F;)Nsupp(Fs) = &
provided by the same lemma is not needed here.) However, a direct sum of two
non-trivial complexes is never simple. Indeed, the projection to one of the two
summands is not invertible.

Thus, we may assume that the support of all cohomology sheaves H* of F*
consists of the same closed point x € X. Set

mo :=max{i | H* # 0} and m; := min{i | H* # 0}.

Since both sheaves H"° and H"™! are concentrated in x € X, there exists a
non-trivial homomorphism H™° —H"™1.

(Indeed, if M is a finite module over a local noetherian ring (A, m) such that
supp(M) = {m}, then there exists a surjection M —=A/m and an injection
A/m ¢ M)

The composition

Felmg] —= H™ ——= H™ —— F°*[my],

where we apply Exercise 2.32, is non-trivial. By ii) this shows my = m;. Hence,
F* ~ F[m] with F a coherent sheaf with support in z and m = mg = m;y.

The only such sheaf which is also simple is k(z). Indeed, for any other sheaf,
the homomorpism which is given by a non-trivial map from a quotient of F of
the form k(z) into the socle of F yields a non-invertible homomorphism. Hence,
F* =~ k(z)[m]. O

Proposition 4.6 (Bondal, Orlov) Let X be a smooth projective variety. Sup-
pose that wx or wy is ample. Then the point like objects in DP(X) are the objects

which are isomorphic to k(x)[m], where x € X is a closed point and m € Z.
See [15].

Proof The Serre functor on DP(X) is given by F*+—>wx ® F*[n], where n is
the dimension of X. Thus, the skyscraper sheaf k(z) of a closed point € X as
well as any shift k(z)[m], does satisfy all three conditions in Definition 4.3. (In
fact, ii) holds for any sheaf.)
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Let us now assume that P € DP(X) satisfies i)-iii). We denote by H’ the
cohomology sheaves of P, which are not all zero. Then condition i), which ensures
H! @ wx[n] ~ H[d], yields d = n and H' ~ H! @ wx.

Since wy or w¥ is ample, the latter condition shows that H® is supported
in dimension zero. Indeed, the Hilbert polynomial Pr(k) = x(F ® wk ) of any
coherent sheaf F is of degree dim supp(F) (see [33]) and hence taking the tensor
product of F with wx makes a difference if dim supp(F) > 0.

The assertion now follows from Lemma 4.5. a

Remark 4.7 The condition on the canonical bundle is necessary. E.g. if wx
is trivial (like for an abelian variety), then Ox (or any other simple sheaf) is a
point like object.

Note also that the proof shows that, even without any positivity assumption
on wy, any point like object in D(X) is of codimension dim(X).

One may also try to characterize line bundles as objects in the derived category.
Let us first give the abstract definition.

Definition 4.8 Let D be a triangulated category with a Serre functor S. An
object L € D is called invertible if for any point like object P € D there exists
np € Z (depending also on L) such that

k(P) Zf t=mnp

0 otherwise.

Hom(L, P[i]) = {

Proposition 4.9 (Bondal, Orlov) Let X be a smooth projective variety. Any
invertible object in DP(X) is of the form Lim| with L a line bundle on X and
m € Z. Conversely, if wx or wy is ample, then for any line bundle L and any
m € Z the object L[m] € DP(X) is invertible. See [15].

Proof Let us suppose that L is an invertible object in DP(X) and let m
be maximal with H™ := H™(L) # 0. In particular, there exists the natural
morphism

L —— H™[-m]

inducing the identity on the m-th cohomology (see Exercise 2.32).
Pick a point zo € supp(H™). Then there exists a non-trivial homomorphism
H™ —k(z). Hence,

0 # Hom(H™, k(z0)) = Hom(L, k(xo)[—m])

and, therefore, ny(,,) = —m.
This could also have been deduced from the spectral sequence

E$* = Hom(H™%(L), k(xo)[p]) = Hom(L, k(xo)[p + q))- (41)

A similar argument has been used before in the proof of Proposition 3.17.
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Apply the same spectral sequence to deduce
Ey ™™ = Hom(H™, k(x0)[1]) = Hom(L, k() [1 + ng(ay)]) = 0.
Thus, as soon as o € X is in the support of H™, we obtain Ext' (K™, k(xo)) = 0.

q

0 Eg,—m—H E21,—m+1 Eg,—m+1
\\

0 EQ™™ Ey™ E3T™

0 0 0 \0 0

p

Next, we shall apply the following standard result in commutative algebra (cf.
[17, X.3 Prop.4]): Any finite module M over an arbitrary noetherian local ring
(A, m) with Ext’ (M, A/m) = 0 is free.

The local-to-global spectral sequence (3.16), p. 85,

B9 = HP(X, Extd(H™, k(x0))) = Ext?T4(H™, k(x0))

allows us to pass from the global vanishing Ext*(H™, k(z)) = 0 to the local
one Ext'(H™, k(wg)) = 0. More precisely, as Ext’(H™, k(xo)) is concentrated in
rg € X, one has

E2Y = H2(X, Ext®(H™, k(x0))) = 0.
Therefore, Ey'' = E%!. Since Ext' (H™, k(xo)) is also concentrated in zo € X,
it is a globally generated sheaf. Hence,

HO(X, Ext (H™, k(x0))) = Ey' =0

implies Ext! (H™, k(x)) = 0. But then the aforementioned result from commut-
ative algebra shows that H™ is free in z¢ € X.

Since X is irreducible, we have in particular supp(H"™) = X. Thereby, there
exists for any x € X a surjection H™ — k(z). Hence,

Hom(L, k(x)[—m]) = Hom(H™, k(z)) # 0.
In particular, ny(,) does not depend on x. As by assumption,
k(x) = Hom(L, k(z)[—m]) = Hom(H™, k(z)),

the sheaf H™ has constant fibre dimension one. Hence, H™ is a line bundle.
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It remains to show that H? = 0 for i < m. We use again the spectral sequence
(4.1). Since H™ is locally free, the row E3'~"™ is trivial except for ¢ = 0. Indeed,

ES™™ = Ext!(H™, k(z)) = HI(X, H™ ® k(z)) =0

for ¢ > 0.

The rest of the argument is by induction. Assume we have shown H? = 0 for
ig < i. Then EY~" = E%~_ Since

E~% = Hom(L, k(x)[—io]) = 0,

this implies that Hom(H®, k(z)) = 0 for any z € X, i.e. H = 0.

Let us now show that conversely any line bundle L on X, and hence any shift
L[m], defines an invertible object in DP(X) whenever the (anti-)canonical bundle
is ample.

By Proposition 4.6 the assumption on the canonical bundle implies that point
like objects in DP(X) are of the form k(z)[m] for some closed point € X and
some m € Z. Hence,

Hom(L[m], P[i]) ~ Hom(L[m], k(z)[i + n])
= H%X,L*(z)[i +n —m])
— Hi+n—m(X, L*(l')) =0

except for ¢ = m —n when it is k(x). We set np :=m — n. a

Remark 4.10 If one naively defines the Picard group of a triangulated cat-
egory endowed with a Serre functor as the set of invertible objects, then for
smooth projective varieties with ample (anti-)canonical bundle wy one has
Pic(DP(X)) = Pic(X) x Z.

Note however that varieties where such an easy description of all invertible
objects does not hold are common.

Proposition 4.11 (Bondal, Orlov) Let X and Y be smooth projective vari-
eties and assume that the (anti-)canonical bundle of X is ample. If there exists an
ezxact equivalence DP(X) ~ DP(Y), then X and Y are isomorphic. In particular,
the (anti)-canonical bundle of Y is also ample. See [15].

Proof Let us first sketch the idea of the proof which is strikingly simple.

Assume that under an equivalence F : D°(X)—=DP(Y) the structure sheaf

Ox is mapped to Oy . Since any equivalence is compatible with Serre functors

(see Lemma 1.30) and dim(X) = dim(Y") =: n (see Proposition 4.1), this proves
F(wk) = F(S%(Ox))[~kn] = S} (F(Ox))[~kn]

~ S (Oy)[—kn] = w¥.
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Using that F' is fully faithful, we conclude from this that
H°(X,w%) = Hom(Ox,w%) ~ Hom(F(Ox), F(w%))
= Hom(Oy,wk) = H(Y,wk)
for all k.
The product in @ H°(X,wk) can be expressed in terms of compositions:
namely, for s; € HO(X,w%) = Hom(Ox,w") one has
81+ 89 = Sé}l (82)[716171] O S1

and similarly for sections on Y.
Hence, the induced bijection

P H (X, k) ~ P H(Y,wf)

is a ring isomorphism. If the (anti-)canonical bundle of Y is also ample, then this
shows

X ~ Proj (@HO(X7W§()) ~ Proj (@HO(Y,w{i)) ~Y.

Thus, under the two assumptions that F(Ox) ~ Oy and that wy (or wj) is
ample we have proved the assertion. Let us now explain how to reduce to this
situation.

As the notions of point like and invertible objects in DP are intrinsic, an exact
equivalence F : DP(X) —=DP(Y) induces bijections

()
{point like objects in DP(X)} <— {point like objects in D®(Y)}

H J

{k(z)[m] |z € X,m € Z} {k(y)m] | y € Y,m € Z}
and

(%)
{invertible objects in DP(X)} <— {invertible objects in D(Y)}

| 1

{L[m] | L € Pic(X)} {M[m] | M € Pic(Y)}.

As we have seen in Proposition 4.6, the point like objects in DP(X) are all
of the form k(z)[m] for x € X a closed point and m € Z. By Proposition 4.9
any line bundle L, in particular L = Ox, defines an invertible object in D" (X).
Thus, by () also F(Ox) is an invertible object in D”(Y") and hence, due to
Proposition 4.9, of the form M [m] for some line bundle M on Y.
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Compose F' with the two equivalences given by M* ® (), respectively by
the shift T~". The new equivalence, which we continue to call F', satisfies
F(OX) ~ Oy.

In order to prove the ampleness of the (anti-)canonical bundle wy, we shall
first prove that point like objects in DP(Y) are of the form k(y)[m]. We will
conclude this, without assuming any positivity of wy, simply from the existence
of the equivalence F.

Due to (x), one finds for any closed point y € Y a closed point z,, € X and an
integer m, such that k(y) ~ F(k(zy)[my]).

Suppose there exists a point like object P € DP(Y) which is not of the form
k(y)[m] and denote by zp € X the closed point with F(k(xp)[mp]) ~ P for a
certain mp € Z.

Note that zp # x, for all y € Y. Hence we have for ally € Y and all m € Z

Hom(P, k(y)[m]) = Hom(F(k(zp))[my], F(k(zy))[my +m])
= Hom(k(zp), k(zy)[my +m —mp]) =0.

Since the objects k(y)[m] form a spanning class in DP(Y") (see Proposition 3.17),
this implies P ~ 0, which is absurd. Hence, point like objects in D?(Y) are
exactly the objects of the form k(y)[m].

Note that together with F(Ox) ~ Oy this also implies that for any closed
point & € X there exists a closed point y € Y such that F(k(z)) ~ k(y)
(no shifts!). This is due to the easy observation that m = 0 if and only if
Hom (O, k(y)[m]) # 0.

k

It remains to prove that with w% (very) ample also w¥ is (very) ample. Let
us prove this in a very geometric way by showing that some power w{i separates
points and tangents (cf. [45, I1.7]). (Here we assume that k is algebraically closed,
but see Remark 4.12.)

We continue to use that for any k(y), with y € Y a closed point, there exists a
closed point z,, € X with F(k(zy)) = k(y) and that F(w%) = wk for all k € Z.

The line bundle w¥ separates points if for any two points y1 # y2 € Y the
restriction map

Tyrgs P WY —= wi(y1) ® oy (y2) = k(y1) © k(y2)
induces a surjection H%(ry, ,,) : HO(Y,wk ) —= HO(k(y1) ®k(y2)). Let us denote
Zi 1= Ty,, © = 1,2. Then
Ty1e € Hom(wi, k(y1) @ k(y2)) =~ Hom(F (W), F(k(z1) @ k(x2)))
~ Hom(w%, k(1) @ k(x3)).

It indeed corresponds to the restriction map 74, ., @ Wk —=k(z1) ® k(z2)

(up to isomorphism, which we will ignore), as there is only one non-trivial

homomorphism w¥ —=k(x;) (up to scaling).
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Altogether this yields the commutative diagram:

HO(TyLyz)
HO(Y, wy) HO(Y, k(y1) @ k(y2))
Hom(Oy, w)’“/) L Hom(Oy, k(y1) @ k(y2))
Hom(Ox, k) — " Hom(Ox, k(z1) & k(z2))

HO(T‘wl 12)
HO(X, k) ——— e HO(X, k(1) © h(22)).

As, by assumption, the line bundle w¥ is very ample for k > 0 (or k < 0)
and, in particular, separates points, the map H%(ry, .,) is surjective. The
commutativity of the diagram allows us to conclude that also H(ry, ,,) is
surjective.

One proceeds in a similar fashion to prove that w{i separates tangent directions
if w% does: Suppose Z, CY is a subscheme of length two concentrated in y € Y,
i.e. Z, is the point y endowed with a tangent direction. The exact sequence

0 — k(y) Oz, k(y) 0

shows that Oz, is given by a non-trivial extension class (with z := z,):
ez € Hom(k(y), k(y)[1]) = Hom(F' (k(z)), F'(k(z))[1])
= Hom(k(), k(z)[1]).
(

The latter, when viewed as a class in Hom(k(z), k(x)[1]), defines a subscheme of
length two Z, C X concentrated in z. Then F(Ogz,) = Oz,. Moreover,

x

F (W — 0z,) ~ wf — Oz,

where the homomorphisms on both sides are given by restriction (check this!).
As w’)“( separates tangent directions, the restriction

HO(X,wk) —= H°(X,0z,)

is surjective. Now use HO(X,w%) = HO(Y,w¥) and
HO(Y, Oz,) ~ Hom(Oy, Oz, ) ~ Hom(F(Ox), F(Og,))
~ HOHl(OX, OZL) >~ HO(X, Ozw),
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to deduce the surjectivity of HO(Y,w{)—=H%(Y, Oz, ), i.e. wi separates the
tangent direction in y given by Oz, . |

Remarks 4.12 i) Bondal and Orlov give a different proof for the ampleness of
w¥ which is maybe less geometric, but has the advantage of working for fields
that are not algebraically closed. They use rather directly the induced bijection
between the sets of closed points of X, respectively Y.

ii) It is noteworthy that the above proof only uses that the equivalence is
graded, i.e. that it commutes with the shift functor, but not that it maps a
distinguished triangle to a distinguished triangle.

A different proof relying on the description that any equivalence is a Fourier—
Mukai transform will be given in Section 6.1 (cf. Proposition 6.1 and Exercise 6.2)
by proving that the (anti-)canonical rings of two smooth projective varieties with
equivalent derived categories are isomorphic. This immediately yields the above
proposition if we assume the same positivity for the two canonical bundles wx
and wy .

iii) Yet another proof of the above proposition, relying more on the original
techniques of Gabriel [38] and of Thomason and Trobaugh [113] (see [38]), can
be found in [101].

iv) Once the result is established, the reader might safely forget the notion of
point like and invertible objects. They are not used any further and don’t seen
to appear anywhere else in the theory.

Corollary 4.13 Let C be a curve of genus g(C) # 1 and let Y be a smooth
projective variety. Then there exists an exact equivalence DP(C) ~ D®(Y) if and
only if Y is a curve isomorphic to C.

Proof If g(C) = 0, then C ~ P! and w} is ample. If g(C) > 1, then wc is
ample. In both cases, the result of Bondal and Orlov applies. |

The remaining case of elliptic curves will be discussed in Section 5.2.

Remark 4.14 Kawamata in [63] has refined Proposition 4.11. He shows that
also the nefness of the canonical bundle is preserved. Moreover, his more geomet-
ric approach allows him to construct birational correspondences between varieties
of general type realizing the same derived category. This will be explained in
Proposition 6.3.

4.2 Autoequivalences for ample (anti-)canonical bundle

After having discussed which projective varieties with ample (anti-)canonical
bundle have equivalent derived categories, we now pass on to the question of
how these equivalences are realized. This immediately reduces to a description
of the group of all autoequivalences of the bounded derived category of a smooth
projective variety X. Here and in the sequel an autoequivalence means an exact
k-linear equivalence DP(X)-"~DP(X). The set of all isomorphism classes of
autoequivalences of DP(X) will be denoted Aut(DP(X)).
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Examples 4.15 i) Any automorphism f : X — X induces the autoequivalence
f. :DP(X) —— DP(X).

Its inverse is given by f* : DP(X)-“-DP(X).
ii) The shift functor generates a subgroup of Aut(DP(X)) naturally isomorphic

to Z.
iii) If L is a line bundle on X, then

®( ):DP(X) — DP(X)

is yet a third type of equivalence, which is isomorphic to the identity if and only
if L is trivial. Hence, Pic(X) &= Aut(D®(X)).

Exercise 4.16 Show that the set Aut(DP(X)) of all isomorphism classes of
autoequivalences indeed forms a group.

As is shown by the next proposition, any autoequivalence of DP(X), where X
is a projective variety with ample (anti-)canonical bundle, is a composition of
autoequivalences of type i)-iii).

Proposition 4.17 (Bondal, Orlov) Let X be a smooth projective variety with
ample (anti-)canonical bundle.

The group of autoequivalences of D®(X) is generated by: i) automorphisms of
X, ii) the shift functor T, and iii) twists by line bundles.

In other words, one has

Aut(DP(X)) ~ Z x (Aut(X) x Pic(X)).

Proof In the proof of Proposition 4.11 we have seen that for any autoequi-
valence F' : DP(X)—=DP(X) there exists a line bundle M € Pic(X) and an
integer m such that the composition of F' with the twist functor M ® ( ) and
the shift functor 7~™ maps line bundles to line bundles and, more specifically,
Ox to Ox. So we may assume that F' already has this property.

We have furthermore seen that in this situation F(w$¥) = w$F for all k € Z
and that the induced isomorphism @ H(X,w%) = @ H°(X,wk) is compatible
with the multiplicative structure.

Thus, F' defines an automorphism of the graded ring @ H°(X,w%) and thus
an automorphism ¢ of X ~ Proj ( H°(X,w%)). Composing F with the equi-
valence ¢*, we obtain an autoequivalence which still maps line bundles to line
bundles, Ox to Ox, but which also acts as the identity on @ H°(X,w%).

We conclude by proving that any autoequivalence with these properties is in
fact isomorphic to the identity. This is an immediate consequence of Proposi-
tion 4.23, to be discussed in the next section, applied to the ample sequence w?}k
(cf. Proposition 3.18).
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As the shift functor commutes with line bundle twists and shifts and
P (L®E®) =" (L) ®¢"(E°),

the fact that the autoequivalences i)-iii) generate DP(X) suffices to conclude the
asserted description of Aut(DP(X)) as a group. a

Remark 4.18 Much more interesting is the group Aut(DP(X)) for a smooth
projective variety X with trivial canonical bundle. A complete description in the
case of abelian varieties, due to Mukai and Orlov, will be given in Chapter 9.
The case of K3 surfaces is still largely open, although a conjectural description
has been put forward in [21].

4.3 Ample sequences in derived categories

Let us recall the definition of an ample sequence in an abelian category (see
Section 3.1).

Definition 4.19 Let A be a k-linear abelian category with finite-dimensional
Hom’s. A sequence of objects L; € A, i € Z, is called ample if for any object
A € A there ezists an integer ig(A) such that for i < ig(A) one has:

i) The natural morphism Hom(L;, A) ® L; == A is surjective.
ii) If j # 0 then Hom(L;, A[j]) = 0.
iii) Hom(A, L;) = 0.

Remark 4.20 Let us also recall the following crucial fact proved earlier in
Lemma 2.73: Let L;, i € Z, be an ample sequence in a k-linear abelian category
A of finite homological dimension. Then, considered as objects in the derived
category DP(A), the L; span DP(A).

So, any ample sequence naturally defines a spanning class, but the notion of
an ample sequence is indeed much stronger. E.g. Proposition 4.23 below is an
assertion that could be formulated for any spanning class, but which can only
be proven under the assumption that the spanning class is induced by an ample
sequence.

Let us also mention the following variant of Proposition 1.49. See [92].

Corollary 4.21 (Orlov) Let A be an abelian category of finite homological
dimension with an ample sequence L; € A, i € Z. An exact functor

F:DP(A) —= D

that admits adjoints G 4 F - H is fully faithful if and only if for any j < 0,
i K j, and all m one has:

HOHl(Li7 Lj [m]) ~ HOHI(F(LZ'), F(LJ)[m])
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Proof If all i and j are tested, the assertion follows directly from Proposi-
tion 1.49 and the fact that {L;} spans DP(A). A direct proof, also giving this
slightly stronger version, goes as follows.

Let j <« 0, i.e. j smaller than a given (negative) number jj, and con-
sider the adjunction morphism L;— H(F(L;)). This may be completed to a
distinguished triangle:

Ly —— H(F(LJ)) — A* —— Lj[l].

The long exact sequence obtained by applying Hom(L;, ), ¢ < j, together with
Hom(L;, L;) ~ Hom(F'(L;), F(L;)) ~ Hom(L;, H(F(L;)))

shows that Hom(L;, A*[k]) = 0 for all k and all i < j. Proposition 2.73 (or
rather Remark 2.75) then implies A®* = 0 and, hence, L; ~ H(F(L;)).

Consider for an arbitrary complex A®* € DP(A) the adjunction morphism
G(F(A®))— A*. Again, it can be completed to a distinguished triangle

G(F(A®)) A* B* G(F(A*))[1].
Applying Hom( ,L;) to it yields a long exact sequence. Since for j < jo the
adjunction morphism L; — H(F(L;)) is an isomorphism, one finds
Hom(G(F(A®)), L;[k]) ~ Hom(F(A*®), F(L;)[k])
~ Hom(A*, H(F(L;))[k])
~ Hom(A®, L;[k])

for all k£ and all j < jo. Thus, Hom(B*®, L;[k]) = 0 for all k and all j < jo.
Applying Proposition 2.73 once more yields B®* = 0. Hence, G o F' ~ id which
is enough to conclude that F is fully faithful (cf. Remark 1.24). |

Remark 4.22 1If L;, i € Z, is an ample sequence, then Ly;, i € Z, is an ample
sequence for any k # 0. This roughly explains why testing the standard criterion
only for i < j < 0 suffices.

Proposition 4.23 (Bondal, Orlov) Let F' : D’(A)—=DP(A) be an eract
autoequivalence. Suppose

is an isomorphism of functors on the full subcategory {L;} given by an ample

sequence L; in A.
Then there exists a unique extension to an isomorphism

fiid — F

See [15, 92].
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Proof The proof of this statement is not really complicated, but somewhat
lengthy. We will split it into several steps (following closely the presentation
in [92]).
Step 1 We characterize objects in A in terms of the ample sequence as follows:
An object A® € DP(A) is isomorphic to an object in A if and only if
Hompp (4)(Li, A*[j]) =0
for all j #0 and i < 0.

One direction is immediate and the other one can easily be verified by using
the spectral sequence (see Example 2.70):

Ey? =Homu(Li, H(A®)[p]) = Hompw(ay(Li, A°[p + g]).

(We assume for simplicity that A has enough injectives. Later for A = Coh(X)
we will embed A into Qcoh(X), which has enough injectives, and consider
the spectral sequence there.) Since A® is a bounded complex, its cohomology
is concentrated in, say, [—k, k|.

Hence, E5? = 0 for |q| > k. Due to condition ii) in the definition, one may
find for any of the finitely many non-trivial cohomology objects H%(A®) an i
such that Hom(L;, HZ(A*®)[p]) = 0 for ¢ < ig and all p # 0. Let us fix one iy that
works for all of them.

Thus, the spectral sequence is entirely supported on a finite segment of the
vertical axis:

q
0 0
0 0o
0 0

p

Thus, Hom(L;, H1(A®)) = Hom(L;, A®[q]) for all ¢ and all i < ig. So, if
Hom(L;, A*[j]) = 0 for all j # 0 and ¢ < 0, then Hom(L;, H(A®)) = 0 for
i < 0 and ¢ # 0. Using property i) in the definition of an ample sequence
applied to HY(A®) shows that H?(A®) = 0 for ¢ # 0. Thus, A® is isomorphic to
an object in A.
Step 2 We show that for any A € A also F(A) € A. Indeed, using the assumption
that id ~ F on {L;} yields

Hom(L;, F(A)[j]) ~ Hom(F(L;), F(A)[j]) ~ Hom(L;, A[j]) =0

for all j # 0 and ¢ < 0. Step one applies and yields F(A) € A.
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Step 3 The aim of this step is to construct for any object A € A an isomorphism
fa: A— F(A) which is functorial in A and extends f.

Use property i) of {L;} applied to A to construct an exact sequence in A of
the form

0 B Lk A 0

7

with i < 0. (Here and in the rest of this section L¥ means LE¥.) Tts image under
F, which is again a distinguished triangle, is a sequence in .4 and hence an exact
sequence in A (see Exercise 2.27). We wish to complete the diagram

B¢ Lk A (4.2)

Iz, i fa

F(B) “—— F(L;)F ——= F(VA)

by a unique morphism f4 : A—=F (A). For the existence, it suffices to show
that the composition g : B—= L¥ — F(L;)¥ — F(A) is trivial.

In order to see this, choose a surjection Lﬁ —> B for j < 0 which yields the
commutative diagram

(We use here that f :id¢z,y ~ Fyp,y is a functor morphism.)

Since the composition Lf — L¥ — A is trivial, the same is true for its image
F(L;)*— F(L;)* — F(A). Hence, the composition of the surjection Lf - B
with g : B— F(A) is trivial. Hence, g : B— F'(A) is trivial.
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Thus, the desired fa : A—=F(A) exists. Its uniqueness follows from the
injectivity of Hom(A, F'(A)) —=Hom(L¥, F(A)) (we are still working within the
abelian category A).

Let us next show that the morphism A— F(A) we have constructed does
not depend on the chosen surjection L¥—=A. As any two surjections can
be dominated by a third one, it is enough to consider a situation of the

type

Lt Lk A

J %

ltf

F(Lj)* —— F(L;)* F(4)

where we suppose that fA : A—=F(A) is induced as above by the surjection
LY —= A. Then also the outer rectangle is commutative, but we have seen that

there is a unique choice for A— F(A) with this property. Hence, fa does not
depend on the chosen surjection.

Finally, one proves that f4 is functorial in A, i.e. that for any ¢ : A; — A,
the diagram

fay
A1 —_— F(Al)

® F(y)

Ay ——— F(A)

fa,

is commutative. ~ ~
In order to compute f4, and fa,, we may choose compatible surjections:

Lk —— 4

L? — A,.
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Indeed, Hom(L;, L?) —Hom(L;, A3) is surjective for ¢ < 0, as its cokernel is
contained in Hom(L;, Bo[1]) = 0. This yields

F(Li)* F(Ay)

F(L;)* F(Ay).

Using the commutativity of all the marked diagrams and of the exterior one, one
finds that

F(Az)

yields identical morphisms LF —= F(Ajy). Since L¥ == A; is surjective, this is
enough to conclude. (Note that the functoriality of fA can also be seen as a
generalization of the fact, proved earlier, that f 4 is independent of all the choices
made.)

Finally, one verifies that the morphism id — F| 4 constructed in this way is
in fact an isomorphism.
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Here, we invoke the diagram (4.2) used to define f4 : A—= F(A):

B¢ LF A (4.3)

fB ffi fa

The morphism B — F(B) on the left is indeed fg, as it commutes with fx,
due to the functoriality shown above, and there is only one that does. From
this diagram we immediately conclude that f A is surjective and that Ker( f n) ~
Coker( fB). Since a similar diagram with A replaced by B shows that fp is
surjective, one finds that f 4 1s in fact an isomorphism.

Step 4 In this last step we will define f4o for any A® € DP(A) recursively
on the length of the complex A®. More precisely, we will assume that we have
constructed an isomorphism f4e : A* — F(A®) for any complex A® with

length(A®) ;== max{q; —qa | H"(A®) #0#£ H?(A*)} +1< N

such that it is functorial in A®. The case of complexes of length one has been
dealt with above, so we assume 1 < V.
Suppose length(A®) = N. Let us write

A® ol Am—l A™ 0.

For i < 0 we may assume that Hom(H™(A®), L;) = 0 and that there exists a
surjection Lf —> A™. We pick one such surjection and consider it as a morphism
L¥[—m]—= A®, which then can be completed to a distinguished triangle

LE[—m] A® B* LE[1 —m). (4.4)

Since H™(LF[-m]) = LF-s=A™ = H™(A®), the long cohomology sequence
of this distinguished triangle shows that H*(B®) ~ H'(A®) for i < m — 1 and
HY(B®*) =0 for i > m. As 1 < N, this shows length(B®) < N and we might,
therefore, use the induction hypothesis. We obtain the following diagram relating
(4.4) and its image under F', which is also distinguished:

LF[—m)] A* B* Lyl —m]

Iz, Fae Fae o 1k
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Here, f A« exists due to TR3. Moreover, it is unique, because the kernel of
Hom(A®, F(A®*)) —— Hom(A®, F(B*))

is a quotient of
Hom(A*, F(L¥)[~m]) ~ Hom(A*, L¥[~m])
~ Hom(H™(A®),L¥) =0

(use the usual spectral sequence to prove the isomorphism). Since fB- and
frr are isomorphisms by induction, the newly constructed morphism f4. is an
isolmorphism as well.

As in the case N = 1, we have to show that the morphism f A is independent
of the choices and that it is functorial in A®. Again, the first follows from the
latter, but for clarity we prove them separately.

As before, in order to prove the independence of the surjection LY —= A™ we
only have to deal with the situation L —> L} —= A™.

Consider the resulting diagram

Li-m] — A® By
| |
LEm] —> A° By

9
/i

(A°%) —— F(B3).

Here, the existence of B} — B3 is ensured by TR3 and the commutativity on

the right follows from functoriality of f for all complexes of length < N. Hence,
the different ways to go from A® to F(BS) are identical. Using the injectivity of

Hom(A*, F(A®)) — Hom(A®, F(B3))

explained above, this shows that both morphisms L{—A™ and Lj — A™
define the same A®* — F(A®).

Finally, we have to prove functoriality. Suppose that ¢ : A* —C* is a morph-
ism in DP(A) of complexes A®* and C* of length < N. In order to conclude, it
will be enough to deduce functoriality of f with respect to this morphism from
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the functoriality with respect to a morphism ¢; : A} — C} with

length(A7) < length(A®), length(C7) < length(C*®),

and
length(A}) + length(C7) < length(A°®) + length(C*®).
Suppose A® and C*® are of the form ... —A""! —= A" —~(0— .., respect-
ively ... —C" ! —= (0™ —0—> ...

Suppose m < n. Then choose a surjection L¥ —= A™ as before, which induces
a distinguished triangle

L[-n] A B* L¥[1—n] .

Apply Hom( ,C*) to it and use Hom(L;[—n],C*®) = 0, as m < n. We find that
Hom(B*,C*)—Hom(A®, C*) is surjective.

Hence, ¢ : A* —>C* can be lifted to ¢, : B®*—C*. By construction, f is
functorial with respect to A®* — B*®, but we may also assume that f is functorial
with respect to B®* —C*, for length(B*®) < length(A*®) and C* has not changed.

This shows the existence of the commutative diagram

P
/\
A* B* c*
$1
Fae J O fpe ©) foe
F(p1)
F(A®*) —— F(B*) ——= F(C*),
-
F(p)

which is what had to be proven.
Suppose now that n < m. Choose a surjection L¥ —-=C™ and construct a
distinguished triangle

LE[—m] C* D* LE[1 —m)]

as before. Since length(D®) < length(C*®), the morphism f is functorial with
respect to the composition @1 : A®*—=C®*—=D*. It is also functorial with
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respect to ¥ : C* — D*® by construction. Hence, one has commutative diagrams

P1
T ¥
A. - C. ’(/} D. C. > D.
L O and L O
F(A%) F(C*) F(D*) F(C*) F(D*).
F(p) F(y) F(y)

The combination of both yields the commutative diagram

A e
N
F(A®) o F(C*)
\ L F)
F(p)
F(C*) F(D*).

F(4)

On the other hand, F(¢) o () : Hom(A®, F(C*®))—Hom(A®, F(D*®)) is
injective, because Hom(A®, F(L¥)[—m]) = 0 for m > n and for m = n we have
Hom(H™(A®), L) = 0 for i < 0. Therefore, F(p) o fae = fce 0 . a

Note that in the above proof we have really not used that {L;} is a spanning
class of DP(A), which stresses the fact that the assertion is about ample sequences
and not about spanning classes. In particular, we need not assume that A is of
finite homological dimension.

Kawamata successfully used the result of Bondal and Orlov to prove the
following more general result.

As before we let D(A) be the derived category of an abelian category A of
finite homological dimension with an ample sequence L;, i € Z.

Proposition 4.24 (Kawamata) Let F' : DP(A) —=D be an ezact fully faith-
ful functor with left and right adjoint G 4 F 4 H and let F' : DP(A) —=D be
another exact functor admitting as well a left and a right adjoint G' 4 F' 4 H'.
Furthermore, we suppose that H o F' has a right adjoint and that G' o F has a
left adjoint.

Then any isomorphism

€ Fliwy — Fllwy
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of the restrictions of F and F' to the full subcategory {L;} C DP(A) can be
extended uniquely to a functor isomorphism

£ F — F'.
See [64].

Proof By Lemma 2.73 any ample sequence in A forms a spanning class in
DP(A). Since F' admits left and right adjoint and coincides with the fully faithful
functor F on the spanning class, Proposition 1.49 tells us that also F’ is fully
faithful. In particular, the adjunction morphisms yield isomorphisms id ~ H'o F’
and G’ o F' ~id (cf. Proposition 1.24).

The assumptions imply that G’ o F 4 H o F’. Indeed, one has functorial
isomorphisms Hom(G' o F' |, ) ~ Hom(F ,F’ )~ Hom( ,H o F’). Similarly,
one finds Go F A H o F.

Since by hypothesis H o F’ has also a right adjoint, Proposition 1.49 applies
and yields together with H o |7,y ~ H o F|;1,} ~id|{z,y that H o F' is fully
faithful. Similarly, one concludes that G’ o F' is fully faithful.

The full faithfulness in turn implies that the natural adjunction morphisms
(G"oF)o(HoF')—id and id— (H o F’) o (G’ o F') are isomorphisms, i.e.
G’ o F and H o F’ are quasi-inverse to each other.

Due to Proposition 4.23, the natural isomorphism

. ~ H(€)
f:1d|{L,;} —_— HOF‘{Li} —_— HOF/|{Li}

can be extended uniquely to an isomorphism f : id —~~ H o F'. The composition

of F(f) : F-"~F o (H o F') with the adjunction gp/(y : (F o H)o F' —F'
yields a canonical functor morphism & : F— F’. Note that restricted to the
ample sequence {L;} this is nothing but & Moreover, if F' is an equivalence,
then gp/( ) is an isomorphism and thus so is §~ , which proves the assertion under
the additional assumption that F' is an equivalence.

Let us now show that for an arbitrary fully faithful functor ' the morphism
£as : F(A®)—= F'(A®) is an isomorphism for any A® € DP(A). Fix A* and
complete 5 4+ to a distinguished triangle

Eae ¥
F(A*) =55 Fr(A%) — B* — = F(A*)]1).
Since the adjoint H is also exact, we obtain a distinguished triangle

H(€40) H ()
H(F(A®)) —— H(F'(A%))

H(B*) ——— H(F(A®*))[1].
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By construction, the morphism H (f Ae) factorizes as

H(E40)

H(F(A*)) H(F'(A®))
H(F(f)) H(gF’(A’))
H(F(H o F'))(A®) H((F o H)F'(A®)).

We know that H(F(f)) is an isomorphism. On the other hand, H(g): Ho F o
H — H composed with the isomorphism hy : H "> H o F o H (by assumption
F is fully faithfull) yields the identity (see Exercise 1.19). Hence, H(g) is an
isomorphism as well. Thus, H (5 Ae) is an isomorphism and, therefore, H(B*®) ~ 0.

We show that this is enough to conclude that B® ~ 0 and hence F(A®) ~
F’(A®). Indeed,

0 = Hom(L,[j], H(B*)) ~ Hom(F(L:)[j], B®)
~ Hom(F'(L;)[j], B®) ~ Hom(L;[5], H'(B*))

for all ¢ and j. Since {L;} is a spanning class, this shows H'(B®) ~ 0. But
then ¢ € Hom(F'(A*), B*) = Hom(A®*, H'(B*)) = 0 and hence ¢ = 0. Thus,
F(A®) ~ F'(A*)® B*[—1]. But the projection to B*[—1] must be trivial, because
Hom(F(A*), B*[—1]) = Hom(A®, H(B*)[—1]) = 0. Therefore, B ~ 0. m|

Remarks 4.25 i) We leave it to the reader to modify the above proposition
and its proof in the sense of Corollary 4.21, i.e. we have only to assume that the
two functors coincide on the very negative part of the ample sequence.

ii) The most interesting special case of the above proposition is when both
functors F' and F’ are equivalences and we have seen that the proof simplifies
drastically in this case. But the more general case is needed when one wants
to show that any fully faithful functor F : D?(X) —=DP"(Y) (and not only any
equivalence) is a Fourier—Mukai transform.



5

FOURIER-MUKAI TRANSFORMS

This chapter introduces the central notion of a Fourier—-Mukai transform between
derived categories. It is the derived version of the notion of a correspondence,
which has been studied for all kinds of cohomology theories (e.g. Chow groups,
singular cohomology, etc.) for many decades.

Functors that are of Fourier—-Mukai type behave well in many respects. They
are exact, admit left and right adjoints, can be composed, etc. In fact, Orlov’s
celebrated result, stated as Theorem 5.14 but not proved, says that any equi-
valence between derived categories of smooth projective varieties is of geometric
origin, i.e. of Fourier-Mukai type.

Section 5.2 explains how to study Fourier—-Mukai transforms by cohomological
methods. We will show how the cohomological Fourier—-Mukai transform behaves
with respect to grading, Hodge structure, and Mukai pairing. This chapter con-
cludes with an easy application to curves by showing that the derived category
of a smooth curve determines the curve uniquely.

Objects in the derived category of coherent sheaves will sometimes be denoted
by £ and, when we want to stress that it is not simply a sheaf, by £°. In particular,
a Fourier—-Mukai kernel, a notion to be introduced in Section 5.1, is often denoted
‘P, although it usually is a true complex.

5.1 What it is and Orlov’s result

Let X and Y be smooth projective varieties and denote the two projections by
¢g: XXY — X and p: X XY —— Y.

Definition 5.1 Let P € DP(X x Y). The induced Fourier—Mukai transform is
the functor

®p : DP(X) —= DP(Y) , &° > p.(q*E°@P) .

The object P is called the Fourier—-Mukai kernel of the Fourier—Mukai trans-
form ®p.

As before, we denote by p., ¢*, and ® the derived functors between the derived
categories. Note, however, that ¢* is the usual pull-back, as ¢ is flat, and that
q*E® ® P is the usual tensor product if P is a complex of locally free sheaves.
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Remark 5.2 In the literature, ®p is sometimes called an integral functor
which is a Fourier—-Mukai transform only when it is an equivalence. We call
X and Y Fourier—Mukai partners, if there exists a Fourier-Mukai transform ®p
that is an equivalence.

The analogy to the classical Fourier transform is nicely explained in [82]. Tt
is most striking in the case of abelian varieties as we shall see in Chapter 9.
Roughly, L2-functions are replaced by complexes of coherent sheaves and, in
particular, the usual integral kernel by an object of the derived category in the
product.

As the kernel P can also be used to define an exact functor DP(Y) —=DP(X)
(in the opposite direction), the simplified notation we have chosen is sometimes

ambiguous. To be more precise, one could write @;( oY to indicate the direction
DP(X) —=DP(Y) (which is of course useful only if X # Y).

Remark 5.3 Any Fourier—Mukai transform is the composition of three exact
functors ¢* : DP(X)—=DP(X x Y), ( )® P : DP(X x Y)—DP(X x Y), and
Py : DP(X x Y)—=DP(Y). Thus, ®p is itself exact.

Examples 5.4 Let us show that some of the equivalences already encountered
in these notes are in fact Fourier—-Mukai transforms. Geometrically more
interesting ones will be studied in detail in later chapters.

i) The identity

id : DP(X) — DP(X)

is naturally isomorphic to the Fourier-Mukai transform ®y, with kernel the
structure sheaf O of the diagonal A C X x X. Indeed, with ¢ : X > A C X xX
denoting the diagonal embedding one has
Do, (%) = pu(q"E° @ On) = p(q"E* ©1.0x)
~ P (1 (t"¢*E®* ® Ox))  (projection formula(3.11))
~(pot)(qot)*E® =&® (aspor=id=gqou).

ii) Let f : X —Y be a morphism. Then

)

f.~ ®o,, : DP(X) — DP(Y)

where I'y C X x Y is the graph of f.

As a special instance, one may consider cohomology H*(X, ) as the Fourier—
Mukai transform ®p, : DP(X)—=DP(Vec;(k)), where X C X x Spec(k) is
considered as the graph of the projection X — Spec(k).
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For arbitrary f : X —=Y one may also use Or, as the kernel for a Fourier—
Mukai transform in the opposite direction which is nothing but the inverse image
f*:DP(Y)—=DP(X).

iii) Let L be a line bundle on X. Then £°+—=E&® ® L defines an autoequi-
valence DP(X) —=DP(X) which is isomorphic to the Fourier-Mukai transform
with kernel ¢, (L), where ¢ : X > A C X x X is again the diagonal embedding
of X.

iv) The shift functor T : DP(X) —=DP(X) can be described as the Fourier—
Mukai transform with kernel Oa[1].

v) Consider once more the diagonal embedding ¢ : X > A C X x X. Then

®, e ~ S¥[—nk],
X

LW

where Sx is the Serre functor F*r—=F°* ® wx[n] with n = dim(X) (see
Definition 3.11).

vi) Suppose P is a coherent sheaf on X x Y flat over X. Consider the Fourier—
Mukai transform ®p : DP(X) —=DP(Y). If € X is a closed point with k(z) ~
k, then

O(k(z)) = P,

where P, := Pl|{z1xy is considered as a sheaf on Y via the second projection
{z} xY —Y.

vii) Let P € DP(X x Y) be a coherent sheaf on X x Y flat over X. This is
commonly viewed as a family of coherent sheaves P, on Y or as a deformation
of the sheaf P,, for a distinguished closed point xg € X. For simplicity we
shall assume k() ~ k. A tangent vector v at zq is determined by a subscheme
Z, C X of length two concentrated in xg € X. Pulling-back

. k(x) 0

and tensoring with P (remember, P is X-flat) yields

0 P{E 0 P

ZoxXY Puo 0.

Viewed as a sequence on Y this gives rise to a class in Exty (Py,, Pa,). In this
way we obtain a linear map, the so-called Kodaira—Spencer map,

1(20) : Type X — Exti (Pry, Pay)-
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By construction, k(xg) is compatible with ®p, i.e. one has the following
commutative diagram:

r(xo)

Tpo X ~ Extl (k(z), k(z)) ———————— Ext!(Pay, Pay)

R
R

HOme(X)(k(Io), k(l’o)[l]) T> HOme(Y) (PTOaPTo[H)

Exercise 5.5 Spell out the details in iii) and vi).

Remark 5.6 We have seen and used already, that any equivalence is compa-
tible with Serre duality (cf. Lemma 1.30). This is no longer true for arbitrary
Fourier—-Mukai transforms.

For example, if f : X —Spec(k) then the Fourier—Mukai transform f,. (see
example ii) above) maps a sheaf F to its cohomology H*(X,F) and in general

SpHY(X, F) = H(X, F) ¢ H'(X, F @ wx)
~ HY(X, F ® wx[dim(X)])
= H°(X,Sx(F)).

Clearly, any (exact) equivalence has a left and a right adjoint. This is in fact
true for any Fourier—Mukai transform as we will explain now. More precisely, the
left and the right adjoint of a Fourier—Mukai transform are again Fourier—-Mukai
transforms, the kernels of which can be described explicitly.

Definition 5.7 For any object P € D*(X x Y) we let
P :=PY @p wy[dim(Y)] and Pr:=P' @ ¢*wx[dim(X)],
both objects in DP(X x V).
For the definition of the derived dual see p. 78.

Remark 5.8 The induced Fourier-Mukai transforms ®p, : DP(Y) —=DP(X)
and ®p, : DP(Y) —DP(X) can equivalently be described as

®p, >~ Ppv oSy respectively Pp, ~ Sx o Ppv.

Proposition 5.9 (Mukai) Let F = ®p : D’(X)—=DP(Y) be the Fourier—
Mukai transform with Fourier—Mukai kernel P. Then

G:=dp :DP(Y) — DP(X) and H:=dp, :DP(Y) — DP(X)

are left, respectively right adjoint to F. See [79].
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Proof The assertion is a direct consequence of the Grothendieck—Verdier dual-
ity (see Theorem 3.34 or rather Corollary 3.35). Indeed, for any £* € DP(X) and
F* € DP(Y) one has a sequence of functorial isomorphisms:

Hompy (x)(G(F*),E°)
= Hompp (x)(g«(PL @ p*F*),E°)
~ Homps (x xy)(PL @ p*F*,¢"E® @ p*wy [dim(Y)])
(Grothendieck — Verdier duality)
=~ Hompp (x xy) (P @ p"F*,q"E®)
~ Hompy (x xy)(p*F*, P ® ¢ E®) (property of the dual, p.84)
=~ Homps (v (F*, p«(P @ ¢"E*)) (since p* - py)
= Hompp (v (F*, F(&*)).

This shows G 4 F. A similar calculation proves F' 4 H. The reader may write
this down as an exercise. An alternative proof can be given using Remarks 5.8
and 1.31. By definition H = Sx o G o S;l and, therefore, G 4 F yields F' 4 H
without any further work. |

This is certainly good news: the results of Section 1.3 apply to any Fourier—
Mukai transform. In fact, due to a recent result of Bondal and van den Bergh
(see [16]) any exact functor F : DP(X) —=DP(Y), whether it is of Fourier-Mukai
type or not, admits left and right adjoints. Here, X and Y are supposed to be
smooth projective in which case their derived categories are saturated.

In order to work out criteria that allow us to decide whether a given kernel
defines a fully faithful functor or an equivalence, we have to consider the com-
positions Ho F', F'o H, etc. More generally, we will show that the composition of
two arbitrary Fourier—-Mukai transforms is again a Fourier—-Mukai transform. We
will give an explicit formula for the Fourier-Mukai kernel of the composition.

Let X, Y, and Z be smooth projective varieties over k a field. Consider objects
P € DP(X xY) and Q € DP(Y x Z). Then define the object R € DP(X x Z) by
the formula

R = WXZ*(W;(YIP & W;Zg)ﬂ

where mxz, Txy, and wyz are the projections from X xY x Zto X x Z, X xY,
respectively Y x Z.

Proposition 5.10 (Mukai) The composition

DP(X) —Z e DE(Y) — s DP(2)



118 Fourier—-Mukai transforms

is isomorphic to the Fourier—Mukai transform
o : DP(X) —— DP(2).

See [79].

Proof The proof is not difficult (e.g. Grothendieck—Verdier duality is not
involved); it is the notation that causes most of the trouble. The following
diagram, introducing the notation for all possible projections, might be helpful:

Ty POTY,Q

Then the proof consists of writing down the following functorial isomorphisms
PR (E°)

r(s*E° O R)

74 (*E* @ Txz, (Tiy P @ Ty, Q))

~ry (Mxz,(T%E* @y P @7y ,Q))  (projection formula)

12

~ 7Ty, (Txy (FE* @P) @ 1y, Q) (use romxy =my)
Et*ﬂyz*(ﬂ}y(q*g.@)lp)@ﬁ;zQ) (usetom/Z:WZ)
~t(Ty 2. 7%y (FE* @ P) @ Q) (projection formula)

~ (W (TET®P)® Q)  (yz, 0Ty = u” o p, see (3.18))
(B () @ Q) = Bo (Bp(E7))
O

Remark 5.11 If the composition ®g o ®p is not an equivalence, then the
kernel R is in general not unique. The above choice of R is the natural one, e.g.
with respect to the adjoint functors. More precisely, if R is given as above as
Txz+(Tiy P @ 3, Q) then Ry ~ wxz, (7% Pr @ 7}, Or) and similarly for Ry,.
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Indeed, applying Grothendieck—Verdier duality yields

Rr ~ R ® s*wx[dim(X)] ~ Hom(R, Oxxz) @ s*wx[dim(X)]
~ wxz Hom(myy P & 1y, Q, mywy [dim(Y)]) ® s*wx [dim(X)]
~ (T (P ® g [dim(X)]) @ 7, (Q ® w*wy [dim(Y)])
~ 7x7+(Txy Pr ® Ty 7 OR).

Exercise 5.12 Let P € D’(X x Y) and ® := ®p : D’(X) —=DP(Y) be the
associated Fourier-Mukai transform. Verify the following assertions:

i) For f : Y — Z the composition f, o ® is isomorphic to the Fourier-Mukai
transform with kernel (idx x f).P € DP(X x Z).

ii) For f : Z—Y the composition f* o ® is isomorphic to the Fourier—Mukai
transform with kernel (idx x f)*P € DP(X x Z).

iii) For g : W — X the composition ® o g, is isomorphic to the Fourier-Mukai
transform with kernel (g x idy )*P € DP>(W x Y).

iv) For g : X — W the composition ® o g* is isomorphic to the Fourier-Mukai
transform with kernel (g x idy),P € DP>(W x Y).

Exercise 5.13 Consider two kernels P; € D*(X; x Y;), i = 1,2, and their
exterior tensor product P; K Py € DP((X; x Xo) x (Y1 X Y2)).

i) Consider the induced Fourier-Mukai transforms ®p, : D(X;) —=DP(Y;),
i=1,2, and ®p mp, : DP(X1 x Xo) —=DP(Y; x Y3). Show that there exist
isomorphisms

Pp,p, (FT W F3) = Op, (F7) K Pp, (F7),

which are functorial in F? € DP(X;), i = 1,2.
ii) Show for R € DP(X; x X3) and its image S := ®p,mp,(R) € D*(Y7 x Y3)
the commutativity of the following diagram (see [94]):

<I>'pl

D" (X;) <——— D*(1)

@Rl i%

Db(XQ) T‘ Db(Yg)

2
Note that P; is this time used to define a Fourier—Mukai transform in the
opposite direction DP(Y;) —=DP(X}).

Let us next try to clarify the relation between arbitrary functors and those of
Fourier—Mukai type. The answer is given by the following celebrated theorem of
Orlov.
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Theorem 5.14 (Orlov) Let X and Y be two smooth projective varieties and
let

F :DP(X) — DP(Y)

be a fully faithful exact functor. If ' admits right and left adjoint functors, then
there exists an object P € DP(X x Y) unique up to isomorphism such that F is
isomorphic to ®p:

Fﬁq)p.

Proof We refrain from giving a proof of this highly non-trivial statement. There
are two accounts of it in the literature: the original one due to Orlov in [92, 94]
and another one due to Kawamata [64]. The proof uses Postnikov systems [39].

The assumption on the existence of the adjoint functor can be weakened or
dropped altogether. Indeed, due to Remark 1.31 the existence of one of the two
implies the existence of the other. The much deeper result in [16] ensures the
existence of both adjoint functors at once. a

From a geometric point of view one might simply restrict one’s attention to
Fourier—-Mukai transforms from the very beginning. This would avoid this diffi-
cult existence result altogether. (Note also that in more general situations, i.e.
twisted derived categories, the existence of the kernel is not always known, not
even for equivalences.)

In view of Orlov’s result one might wonder whether any exact functor is
a Fourier-Mukai transform. As a warning, that one might lose information
when we pass from objects in the derived category of the product to Fourier—
Mukai functors, we include the following example that was communicated to me
independently by A. Calddraru and D. Orlov, see [29].

Examples 5.15 Let E be an elliptic curve. Consider Oa as an object of the
derived category of DP(E x E). Using Serre duality on the product, one finds that
Ext?(Oa, On) is one-dimensional. Thus, there exists a non-trivial morphism

p:0p — (’)A[Z]

in DP(E x E).

As in general any morphism between objects on the product induces a morph-
ism between their associated Fourier—Mukai transforms, this ¢ yields a morphism
o, : P, —=Pp,[2)- Note that both Fourier-Mukai transforms are equivalences,
in fact ®p, =id and @, [y is the double shift F*+— F*[2].

Now, one proves that @, is zero, although ¢ is not. Indeed, for a sheaf F on
E one has ®o,(F) = F and ®p,9(F) = F[2]. As Ext*(F,F) = 0 (since E
is one-dimensional), the map ®,(F) must be trivial. To conclude, one uses the
fact that any object in DP(E) is isomorphic to a direct sum of shifted sheaves
(see Corollary 3.15) and, therefore, ®,,(F*) : F* — F*[2] is trivial for any F* €
DP(E).
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Exercise 5.16 Verify the last conclusion.
Orlov’s theorem is most often applied to equivalences:

Corollary 5.17 Let F : DP(X)-Z-DP(Y) be an equivalence between the
derived categories of two smooth projective varieties. Then F is isomorphic to
a Fourier-Mukai transform ®p associated to a certain object P € DP(X x Y),
which is unique up to isomorphism. O

Exercise 5.18 Show that ®p is an equivalence if and only if the following two
conditions are satisfied:

1) T34 (m79P @ m33PrL) =~ Oa, and
ii) 7T13*<7T1‘2PL & 7T§3P) ~ Oa, -

Here, we view P and Py, as objects in DP(X x Y), respectively in D?(Y x X).
Of course, a similar criterion works for Py, replaced by Pg.

Exercise 5.19 Use the uniqueness statement of Orlov’s result and the descrip-
tion of the right and left adjoint functors of a Fourier—Mukai transform, in order
to show the following description of the derived dual of Oa:

OX ~ Oal—n]| ® p*wy ~ Oa[-n] ® ¢*w¥,

where A C X x X is the diagonal of an n-dimensional smooth projective variety.
Of course, alternative proofs of this statement exist (see Corollary 3.40).

Exercise 5.20 Let P; € DP(X; x X;), i = 1,2, be objects such that
Dp, : DP(X,) —= DO(V))

are equivalences.
Show that the exterior tensor product P; K Py € DP((X; x Xa) x (Y7 x Y3))
defines an equivalence

(I)p1|z|p2 ZDb(Xl X X2> e Db(Yl X Yg)

For an alternative proof, at least for the fact that this functor is fully faithful,
see Corollary 7.4 and Exercise 7.14.

The following assertion had already been stated (and proven) as Proposi-
tion 4.1. We nevertheless outline another and more geometric proof here, which
uses the existence and uniqueness of the Fourier—Mukai kernel.

Corollary 5.21 Let X and Y be smooth projective varieties with equivalent
derived categories DP(X) and DP(Y). Then dim(X) = dim(Y)).

Proof The following argument is taken from [63].
By Orlov’s result we know that any equivalence F : D?(X) "~ DP(Y) is of the
form ®p for some P € DP(X x Y). Moreover, F has a left adjoint given as the
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Fourier-Mukai functor DP(Y) —=DP(X) with kernel Pr, = PV ® p*wy [dim(Y)]
and a right adjoint D(Y) —=DP(X) given as the Fourier-Mukai transform with
kernel Pr = PY ® ¢*wx[dim(X)] (see Proposition 5.9).

Since F' is an equivalence, its right and left adjoints are both quasi-inverse to
F. Using the uniqueness of the Fourier—-Mukai kernel, we conclude that P, and
Pr are isomorphic objects in D?(X x Y).

Hence,

PY =P @ (pwx ® ¢ wy [dim(X) — dim(Y)]) .

With PV an object of a bounded derived category, this immediately yields
dim(X) = dim(Y). O

Remark 5.22 1In the proof we have tacitly deduced one of the standard facts
that is used over and over again, namely that the kernel P € DP(X x Y) of a
Fourier—-Mukai transformation ®p which is an equivalence satisfies

P®Rqgwx ~PRpwy.

We will come back to this necessary criterion in Proposition 7.6. There it will be
turned into a sufficient criterion for a fully faithful functor to be an equivalence.

Here is another nice application of Orlov’s existence result.

Corollary 5.23 Suppose ® : DP(X) ~ D"(Y) is an equivalence such that for
any closed point x € X there exists a closed point f(x) € Y with

D(k(x)) =~ k(f(x)).

Then f : X —Y defines an isomorphism and ® is the composition of f. with
the twist by some line bundle M € Pic(Y'), i.e.

O~ (M®( ))o f

Proof In the first step one shows that there exists a morphism X —Y which
on the set of closed points induces the given map f.

If we think of ® as a Fourier-Mukai transform ®p, then Lemma 3.31 implies
that P is an X-flat sheaf on X x Y. By assumption P|(;1xy =~ k(f(x)). Choosing
local sections of P shows that it indeed defines a morphism X —Y inducing f
on the closed points. By abuse of notation, the morphism will again be called f.

Next, one uses the assumption that ® is an equivalence to prove that f is
an isomorphism. Since the sheaves k(x) span DP(X), their images span DP(Y).
Thus, if y € Y is a closed point, then there exists a closed point € X and an
integer m with Hom(®(k(x)), k(y)[m]) # 0. This implies that any k(y) is of the
form k(f(z)) for some closed point x € X, i.e. f is surjective on the set of closed
points.

Similarly, two different points 1 # zo2 € X give rise to two different points
f(x1) # f(z2), ie. f is injective. In characteristic zero, this already suffices to
conclude that f as a morphism between two smooth varieties is an isomorphism.
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Without this assumptions, one argues by using a quasi-inverse ® ! to produce
an honest inverse f~1.

Eventually, P considered as a sheaf on its support, which is the graph of
f, is a sheaf of constant fibre dimension one and hence a line bundle. Using
supp(P) =Y given by the second projection allows us to view this line bundle
as a line bundle M on Y. a

Orlov’s existence result can also be used to give a somewhat round-about proof
of the classical result of Gabriel saying that the abelian category of coherent
sheaves on a scheme determines the scheme.

Corollary 5.24 (Gabriel) Suppose X and Y are smooth projective varieties.
If there exists an equivalence Coh(X) ~ Coh(Y'), then X andY are isomorphic.

Proof Clearly, any equivalence
®, : Coh(X) —> Coh(Y)
between the abelian categories can be extended to an equivalence
& :DP(X) — DP(Y)

of their derived categories.

A sheaf F € Coh(X) is called indecomposable if any non-trivial surjection
F —=G with G € Coh(X) is an isomorphism. It is not difficult to show that any
indecomposable sheaf is of the form k(x) with x € X a closed point.

The equivalence ®( : Coh(X) "> Coh(Y) sends an indecomposable object to
an indecomposable one. Hence, for any closed point x € X there exists a closed
point y € Y with ®g(k(x)) ~ k(y). This continues to hold for the extension
® : DP(X)-=-DP(Y). By Corollary 5.23 this implies that ® is of the form

Fr+—=M ® f.F* for some isomorphism f : X "5Y and some line bundle M
onY.

Note that we have not only proved that X and Y are isomorphic, but that
in fact any equivalence between their abelian categories is of the special form
Fr—M ® f.F. |

5.2 Passage to cohomology

In this section we only consider smooth projective varieties over the complex
numbers. We usually will not distinguish between a projective variety and the
associated complex manifold. In particular, we will tacitly use the equivalence of
the category of coherent sheaves on a projective variety and the category of ana-
lytic coherent sheaves on the associated complex manifold. When not mentioned
otherwise, it is the Zariski topology that will be considered.
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Let F* be a bounded complex of coherent sheaves F', i.e. F* € D(X). To
such a complex we associate the element

(7= (-)'F] € K(X)

in the Grothendieck group K(X). By definition [£°] + [£?] = [€1] in K(X) for
any short exact sequence

0 o &t &2 0.

As any coherent sheaf on the smooth variety X admits a finite locally free res-
olution, the elements of K(X) can be written as linear combinations Y a;[£7]
with &; locally free sheaves. This allows us to define a ring structure on K(X)
by setting

[&1] - [&2] = [&1 ® &)

for locally free sheaves &;. With this definition, the trivial line bundle Ox
becomes the identity element in K (X).
To pass from the derived category DP(X) to K(X) one first defines the map

DP(X) — K(X), F*+—— [F°] = (-1)"F.

Note that [F*[k]] = (—1)*[F*] and [F} ® F3] = [F}] + [F3].
Observe that by the definition of K(X) one has

[Pl =) (~)H(F*)] € K(X).

In particular, two isomorphic (in DP(X)) complexes F* ~ £* € DP(X) define
the same element in K(X), i.e. F*+>[F*] is defined on the set of isomorphism
classes of objects in DP(X).

The derived tensor product of complexes is the ordinary tensor product
for complexes of locally free sheaves. Hence [F? ® F3] = [F7] - [F3]- Thus,
DP(X)—= K(X), F*+—=[F*] is compatible with the additive and the multi-
plicative structures given on both sides.

The Grothendieck group K(X) is contravariant in the sense that for any
morphism f : X —Y the pull-back F+— f*F for locally free sheaves defines
a ring homomorphism f*: K(Y)— K(X).

In order to view K (X) covariantly, one defines for any coherent sheaf F on X
the generalized direct image

AIF =Y (CY)Rf(F)]

(here we assume that f is projective or proper). This yields a group
homomorphism:

fr: K(X) — K(Y)

for any projective morphism f: X —Y.
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Both maps are compatible with derived pull-back and derived direct image,
i.e. for any f: X —Y there are two commutative diagrams of the form

DP(Y) . DP(X) DP(X) . DP(Y)
Hl J []L o L[]
K(Y) —— K(X) K(X) — K(Y)

(Recall that we write f* and f. for the derived functors Lf*, respectively Rf..)
For the pull-back this is rather obvious, as we may represent any complex by
a complex F* of locally free sheaves F? and f* can be computed by applying it
to any F°.
In order to see the compatibility of the direct image, one has to show that

[RI.E%] = S2(~1)i[Ri£.£°] equals
FIETN =D (1) AHIEN] = D (=1)' Y (1Y [R f.H(E°)]
which is a consequence of the Leray spectral sequence (3.3)
EY? = RPf HI(E®) = RPTIf,(E°)
and the observation
SO (B = S () B

and hence

SR = (-1

In complete analogy to the definition of the Fourier—-Mukai functor ®p» one
defines the K-theoretic Fourier—Mukai transform. Let e € K(X x Y') be a given
class in the Grothendieck group of the product of two projective varieties X and
Y. Then, one defines

K K(X) — K(Y), [fr— ple®q"(f)).

Due to the aforementioned compatibilities, the two Fourier-Mukai maps
commute:

DP(X) — > DY(Y)
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Remarks 5.25 i) In fact, the passage from a Fourier—Mukai transform between
the derived categories of two varieties to a Fourier—Mukai transform of their
K-groups does not really require the existence of a Fourier-Mukai kernel. Indeed,
any exact functor F' : DP(X)—=DP(Y) induces a group homomorphism F¥ :
K(X)—=K(Y) that commutes with the projections [ ]: D? — K.

ii) So far, everything works for varieties over arbitrary fields. We could in fact
go on without any further assumption on the field and consider the Fourier—
Mukai transform on the level of the Chow groups CH* (X)), respectively CH*(Y').
As Chow groups and K-groups are actually isomorphic after tensoring with Q
and we therefore would not gain much, we shall pass directly to cohomology
where the assumption that the ground field is C comes in.

We next wish to descend further and consider a cohomological Fourier—Mukai
transform for rational cohomology H*(X, Q). Here and in the sequel, H*(X, Q)
denotes the cohomology of the constant sheaf QQ on the associated complex man-
ifold X. Recall that H*(X,Q) has a natural ring structure. The product of two
classes o, 3 € H*(X,Q) will be written . or, simply, a3. Any morphism (or
continuous map) f : X —Y induces a ring homomorphism

f*H*(Y,Q) —— H*(X,Q).

If X and Y are compact and connected, e.g. X and Y projective varieties,
we may use Poincaré duality H*(X,Q) ~ H?4™(X)~{(X Q)* and H (Y,Q) ~
H?dm(Y) =iy, Q)* to define

f* - H* ()(7 Q) > H*t+2dim(Y)-2dim(X) (Y, Q)

as the dual map. With this definition, the projection formula f.(f*a.8) =
a. f«(8) holds.
For any cohomology class a € H*(X x Y, Q) one introduces

o H*(X,Q) — H*(Y,Q), B+ p.(a.q*(8)).

The standard way to pass from the Grothendieck group K(X) down to
cohomology is via the Chern character

ch: K(X) — H*(X,Q).

For the definition of the Chern character we refer, e.g. to [37, 45]. The underlying
idea for its definition is that the Chern character is additive and that for a line
bundle L one has

ch(L) = exp(c1(L)) = Y _er(L)/il.

The first Chern class c; can be defined as the image of L € Pic(X) = HY(X, 0%)
under the boundary map H'(X, O%)—= H?(X,Z) of the exponential sequence.
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Reducing to line bundles is achieved by passing to certain fibre bundles over X
where the pull-back of a given vector bundle can be described as a successive
extension of line bundles.

However, the Chern character does not, in general, commute with the Fourier—
Mukai transform on K-groups and cohomology. At this point the Todd class td
has to be taken into account. By definition, the Todd class td is multiplicative,
ie. td(E1 @ E3) = td(E1).td(Es), and td(L) of a line bundle L is defined by the
formal power series

_ c1(L)
1 —exp(—cy (L))
For a smooth variety one writes td(X) instead of td(7x ). The key to the compa-

tibility of the various Fourier—-Mukai transforms is the Grothendieck—Riemann—
Roch formula (see [37]):

td(L)

Theorem 5.26 Let f : X —=Y be a projective morphism of smooth projective
varieties. Then for any e € K(X) one has

ch(fi(e))-td(Y) = f. (ch(e).td(X)). (5.1)

The Hirzebruch-Riemann—Roch formula can be viewed as the special case of
the structure morphism f : X — Spec(k):

Corollary 5.27 For any e € K(X) one has
x(e) = [ (eh(e)a(x).
More precisely, for £ € DP(X) this reads
ST1NED = x(€%) = [ (eh(EM (X)),
where by abuse of notation, we write ch(€®) for ch([£°]).

Definition 5.28 One defines the Mukai vector of a class e € K(X) or of an
object £* € DP(X) as the cohomology class

v(e) := ch(e)./td(X) respectively v(E°) :=v([E°]) = ch(€®)./td(X).

The square root /td(X) is a cohomology class whose square is td(X). Using
the fact that the degree zero term of td(X) is 1 € H°(X, Q), its existence can
be shown by a formal (but finite) power series calculation. Clearly, by definition
the induced map

v: K(X) —— H*(X,Q)

is additive.
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Corollary 5.29 Lete € K(X xY). Then

o, (ch( f). td(X)) = ch (2K (f)) A/td(Y)

for any f € K(X). In other words, the following diagram commutes

Proof The assertion follows immediately from the commutativity of the
following diagrams

*
]

KX) — = K(XxY) —5 = K(XxY) — = K(Y)

<

v v /td(Y) vy/td(X)

H*(X) ——= H* (X xY) ——= H*(X xY) —— H*(Y).

g (e) P

The commutativity of the first two is easily deduced from the projection formula.
The commutativity of the last one is a consequence of the Grothendieck—
Riemann-Roch formula (5.1). |

Remark 5.30 The cohomological Fourier-Mukai transform & neither
respects the grading of H* nor the multiplicative structure (not even for
a = wv(e)).

Let P € D?(X x Y) be the kernel of a Fourier-Mukai transform

dp : DP(X) — DP(Y).

In the sequel, we will denote the induced cohomological Fourier-Mukai transform

@ with kernel o := v(P) = ch(P)./td(X x Y) simply by
Ol . H*(X,Q) —> H*(Y,Q).

With all characteristic classes (td, ch, etc.) being even, <I>7I;[ surely respects the
parity, i.e.

7 (H™" (X)) C H™™(Y) and &7 (H*'(X)) c HM(Y).
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Remark 5.31 Note that one does not know how to associate a cohomolo-
gical Fourier-Mukai transform to an equivalence F : DP(X)—=DP(Y) without
using the existence of the kernel P, the main problem being that in general the
Chern character ch : K (X)g— H*(X, Q) is not surjective, i.e. often cohomology
classes of objects in DP(X) span a proper subspace of H*(X, Q).

Lemma 5.32 Let ®p : DP(X)—=DP(Y) and ®g : D?(Y) —=DP(2) be two
Fourier-Mukai transforms and let ®r : D°(X)—=DP(Z) their composition
given as in Proposition 5.10. Then

o =od 0@},

Proof As the proof is completely analogous to the proof of Proposition 5.10,
we leave this to the reader. (Exercise!) a

Note that the analogous statement for the K-theoretic Fourier-Mukai trans-
form, i.e. @{7(3] = (D[Ié] o‘b[};], is trivial due to the surjectivity of D? — K. Except
for very special varieties we cannot expect that K — H* is surjective; the image
of the Mukai vector

v: K(X) —— H*(X,Q)

might be very small compared to the full cohomology H*(X,Q). So, it is a nice
surprise to have, nevertheless, the following

Proposition 5.33 IfP € D*(X x Y) defines an equivalence
Op : DP(X) — DP(Y)
then the induced cohomological Fourier—Mukai transform
OH : H*(X,Q) —> H*(Y,Q)
s a bijection of rational vector spaces.
Proof If ®p is an equivalence, then

(I>7)R ] (I)p >~ (I)OA (Z ld) and (p'p o (I)'pR ~ (I)(’)A (Z ld)

Also recall that O is the only object on the product that induces the identity
Fourier—-Mukai transform.
Due to the above lemma one has

P~ Dgodp = P =0F 0L,

where R = mxz, (7% P ® 73, Q) as in Proposition 5.10. Thus, we can conclude
that

PP 0P =0f, and PR odR =dF .
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Now, in order to ensure that ®2 : H*(Y,Q)— H*(X, Q) is indeed inverse to
®f, it suffices to show that ®F = id.

Use the Grothendieck-Riemann-Roch formula (5.1) for the diagonal embed-
dingt: X A & X x X:

ch(Oa)td(X x X) = 14 (ch(Ox).td(X)) = t.td(X).
Dividing by 1/td(X x X) and using ¢*/td(X x X) = td(X) yields
ch(Oa).v/td(X x X) = 1.(1).

Hence,
pe (4 (8).ch(Oa) V4 (X x X))
= (7 (8)1-(1)) = pe (1= (¢ (B))) = B,
as poi=qo.=id. o
Exercise 5.34 Show that v(Ox) = [A].

Exercise 5.35 Show that ®% : K(X)— K(Y) is an isomorphism of additive
groups if ®p : DP(X) —=DP(Y) is an equivalence.

Exercise 5.36 Consider the shift functor 7' : DP(X)—=DP(X) (which is
a Fourier-Mukai transform due to iv), Example 5.4). Show that the induced
cohomological Fourier-Mukai transform TH acts by multiplication with —1.

Exercise 5.37 Let L € Pic(X) and ® := L® ( ) : D’(X)—=DP(X). Show
that ® is given by multiplication with ch(L) = exp(c;(L)). In particular, ®*
does not respect the cohomological degree as long as ¢; (L) # 0.

Exercise 5.38 Use the fact that all characteristic classes of the kernel P of a
Fourier-Mukai equivalence ®p : DP(X) " DP(Y) are even cohomology classes
to deduce equality of the Euler numbers, i.e. e(X) = e(Y).

Let us now consider in addition the Hodge structure on H*(X,Q). Since X is
a smooth projective variety over C, Hodge theory tells us that there is a natural
direct sum decomposition

H"(X,C)= @ H"(X)
pt+g=n

with HP:¢ = H?P. Moreover, HP9(X) ~ H1(X, QP).
The Chern classes, and hence all characteristic classes, are classes of type (p, p).
Thus, the Mukai vector factorizes over the algebraic part of the cohomology

o( ) = ch( ) /td(X) : K(X) — @ HP?(X) N H?(X,Q).
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Proposition 5.39 If ®p:DP(X)-DP(Y) is an equivalence, then the
induced cohomological Fourier—Mukai transform @g : HY(X,Q)— H*(Y,Q)
yields isomorphisms

P B (X)~ P H(Y) (5.2)
p—q=t p—q=i
for alli = —dim(X),...,0,...,dim(X).

Proof As we have seen that @g defines an isomorphism of the rational
cohomology groups, it suffices to show that its C-linear extension satisfies

eR(HPIX)C P H(Y).

Consider the Kiinneth decomposition of ch(P).1/td(X x Y), which is of the
form 3> a?"7 K 3% with o4 € HP ¢ (X) and "5 € H™5(Y). Moreover, only
terms with p’+r = ¢’ +s contribute, for the class ch(P)./td(X x Y) is algebraic,
i.e. a sum of terms of type (¢,t).

For a € HP4(X) only those terms in 3 a?"¢ K 3% with

(p,@) + (¥, q) = (dim(X), dim(X))

contribute to (). In fact,

()= (/Xamp’»q’> B e @H™(Y).

Hence, p—q=q¢ —p' =1 —s. a

Remark 5.40 There is a construction that works over any field, which uses
Hochschild cohomology in order to associate to any derived equivalence a vector
space isomorphism

@ HP(X7 /\qTX ®WX) ~ @ Hp<Y7/\qu ®wy).

pt+g=i p+q=i

As HP(X,\N"Tx ® wx) ~ HP(X, Q% ?) with n = dim(X), this can also be

interpreted as an isomorphism
@ mEo= @ o), (53)
p—q=i—n p—q=i—n

which is of the same form as the one in (5.2).
Note however that (5.2) and (5.3) are not supposed to commute; an extra
factor v/td has to be put in on both sides. For more details see Remark 6.3.

It turns out that ®H : H*(X,Q) =~ H*(Y,Q) associated to an equivalence
®p : DP(X)-=-DP(Y) is also compatible with a natural quadratic form that
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can be defined on H*(X,Q). This was first observed by Mukai in the case of K3
surfaces. The general definition was recently given by C&ldararu in [28].

The basic idea is the following. If ®p : DP(X)-"-DP(Y) is an equival-
ence, then for any £, F* € DP(X) one finds, using the induced isomorphism
Ext'y (E°, F*) ~ Exty (Pp(E°®), Pp(F*)), the equality

X(E%,F°) =x (Pp(E°), 2p(F*)). (5.4)

(Here, by definition, y(£%, F®) := Y (—1)" dim Ext‘(£*, F*).) If both sides can
be understood as a bilinear pairing of the Mukai vectors, then one might expect
that q)g respects this pairing also for classes that are not in the image of the
Mukai vector.

Using the Hirzebruch-Riemann-Roch formula, x(€®,F*) can be expressed as

X(E®,F®*) = x(X, £ @ F*) = /X ch(£°Y).ch(F*).td(X)

= [ (enter) V) - (ene).ia0H))

Now, ch(F*®).\/td(X) = v(F*). But how can ch(£*").1/td(X) be expressed in
terms of v(£°®)? The answer is given by the following lemma. To formulate it, let
us introduce vV 1= " (—1)kvy for any v = " vx € @ H?*(X, Q). This operation
is easily checked to be multiplicative (see ii), Exercise 5.43).

Lemma 5.41 With this notation one has
v(é"v) = ch(é"v). td(X) = v(E’)V.exp(cl(X)/Q).

Proof Since cx(£Y) = (—1)Fci(€) for any locally free sheaf £, the Chern
character satisfies ch(£*") = ch(£®)" and hence

(E°Y) = ch(E*Y).\/Hd(X) = v(E*)". (W) .
ta(X)

It therefore suffices to prove \/td(X) = /td(X exp (c1(X)/2) or, equivalently,
td(X) = td(X)V. exp(c1(X)). The latter can easﬂy be deduced from the splitting
principle by writing td(X) =[] #(_7) and

(). exp(er (X)) = [[ =2 eXp Hexp ().

With this observation in mind, the following definition seems very natural.
Definition 5.42 Let v =3 v; € @ H’(X,C). Then one defines the dual of v
by

=Y V=T € H*(X,C).
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The Mukai pairing on H*(X,C) is the quadratic form

(v,0")x ::/Xexp(cl(X)/2).(Uv.v’).

Clearly, both definitions of the dual vV coincide for even cohomology classes.
Moreover, by the very construction, one has for all £*, F* € DP(X):

X(E%,F%) = (u(&*),0(F*)). (5:5)

Exercise 5.43 Prove the following assertions.
i) Suppose c¢;(X) = 0. Then the form ( , )x is symmetric for X even
dimensional and alternating otherwise.
ii) Taking duals is multiplicative, i.e. v¥V.w" = (v.w)V.
iii) If p: X x Y —Y is the second projection, then

pi(v)” = (1)1 Op, (v¥)
for any v € H*(X x Y,C).

The following proposition is Caldararu’s generalization of the original result
of Mukai for K3 surfaces.

Proposition 5.44 Let ®p : D?(X) "-DP(Y) be an equivalence. Then

o . H*(X,Q) —= H*(Y,Q)

is isometric with respect to the Mukai pairing, i.e. for all v,v' € H*(X,Q) one
has

(1) x = (25 (1), 2R (V) -

Proof It suffices to show that (®H(v),w)y = (v, @g_l(w»X for all v €
H*(X,Q) and w € H*(Y,Q). To see this, note first that the inverse functor of
®p is isomorphic to ®p, , where P, = PY @p*wy [n] with n := dim(X) = dim(Y")
(see Proposition 5.9). By Lemma 5.32 this then shows (I)g71 =of .
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Using Exercise 5.43 and Lemma 5.41 one computes
<(I)71;I (U)a w>y

. /Y exp(c1(V)/2)pe(q*v-0(P)).w

= [ e )21 va(P) g

= [ epla ()20 0 (P) g

=" [ em(a)/207 P (e (X < Y)/2) g

= [P el (020
XXY

= <v, @gL (w)>X .

(We also used the fact that the shift [n] acts by (—1)™. See Exercise 5.36.) O

As an application of the above observations, we will prove that two elliptic
curves E and E’ have equivalent derived categories, i.e.

D’(E)~DP(E) <= E~FE.

Suppose ®p : DP(E) =~DP(E’) is an equivalence. Then the induced cohomo-
logical Fourier-Mukai transform ® : H*(F, Q) — H*(E’, Q) is a direct sum of
isomorphisms

HY(E,Q) ~ HY(F',Q) and (H°® H*)(E,Q)~ (H° ® H?)(E',Q)

(cf. Remark 5.30).

Moreover, by Proposition 5.39 one knows that ®X : H'(E,Q) — H'(E', Q)
respects the Hodge decomposition H! = H @ H®%'. On the other hand, the
weight-one Hodge structure determines the elliptic curve. More precisely, £ ~
HY(E)*/H\(E,Z) ~ H"Y(E)/H*(E,Z).

Hence, it suffices to show that for a derived equivalence

®p : DP(E) —> DP(E')

of two elliptic curves the cohomological Fourier—-Mukai transform is defined over
Z, i.e.

oM . HY(E,7) — HY(E',Z).
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This follows from the observation that td(E x E’) = 1 and ch(P) = r +¢1(P) +
(1/2)(c? — 2¢2)(P), where the degree four term, which might a priori be non-
integral, does not contribute to H'(E)— H'(E'). (As a matter of fact, it can
be shown that also chy(P) is integral.)

Remark 5.45 The situation is more complicated and more interesting for
higher dimensional abelian varieties, as shall be explained in Chapter 9.

Combined with Corollary 4.13 we thus have proven the following folklore
result.

Corollary 5.46 Let C' be a smooth complex projective curve and let Y be a
smooth complex projective variety. Then

DP(C)~D"(Y) = C=~V.
O

With the exception of the group of autoequivalences of the derived category
of an elliptic curve, treated in broader generality in Chapter 9, we thus have
achieved a complete understanding of the derived category of smooth projective
curves.



6

DERIVED CATEGORY AND CANONICAL
BUNDLE - II

With this chapter we return to questions already dealt with in Chapter 4. More
precisely, we address the question of how much of the positivity of the canonical
bundle of a variety is preserved under derived equivalence. The main difference
to the treatment of Chapter 4 is that we now make extensive use of Orlov’s
existence result (Theorem 5.14). The discussion will thus be more geometric, as
we use the description of derived equivalences as Fourier-Mukai transforms, and
the results will be finer.

In Section 6.1 we present Orlov’s refinement of his joint result with Bondal,
that was presented as Proposition 4.11, by showing that Kodaira dimension and
canonical ring are preserved under derived equivalence. The original result can
in fact be seen as a corollary to this. As the same techniques can be used to
derive the invariance of Hochschild cohomology under derived equivalence, a
fact alluded to before, this is included here.

Kawamata went one step further and showed that also nefness of the canon-
ical bundle and the numerical Kodaira dimension are preserved under derived
equivalence. Proofs of these results can be found in Section 6.3.

Section 6.4 studies the relation between derived and birational equivalence.
We will come back to this in later chapters. This section concludes with a con-
jecture, put forward by Bondal, Orlov, and Kawamata, that clarifies the relation
between these two equivalence relations. The most famous special case of it is
the conjecture that two birational Calabi—Yau varieties have equivalent derived
categories (proved in dimension three by Bridgeland, see Section 11.4).

Section 6.2 contains technical results on the geometry of the support of the
Fourier—-Mukai kernel of an equivalence. They are crucial for the proofs in
Sections 6.3 and 6.4, but also of independent interest. The last Section 6.5 col-
lects definitions and standard facts on (numerical) Kodaira dimension, nef line
bundles, and the like.

In this chapter, all varieties are defined over an algebraically closed field
of characteristic zero. This assumption simplifies some of the arguments in
Section 6.2.

6.1 Kodaira dimension under derived equivalence

Recall that the result of Bondal and Orlov in particular shows that for two
smooth projective varieties with equivalent derived categories the canonical
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bundle wy is ample if and only if wx is ample. In fact, they prove X ~ Y
in this case. Roughly, this is achieved by identifying the canonical rings which,
under the ampleness assumption, is enough to deduce isomorphy of the vari-
eties. We will see that the existence of the Fourier—Mukai kernel (provided by
Theorem 5.14) not only allows us to prove finer results, but that it also provides
a more geometric proof of the original one.

A formal consequence of Orlov’s theorem 5.14 and the fact that any equi-
valence commutes with Serre functors is the following result. For the definition
of the canonical ring and the Kodaira dimension of a variety see Section 6.5.

Proposition 6.1 (Orlov) Suppose X and Y are smooth projective varieties
with equivalent derived categories DP(X) ~ DP(Y).

Then there exists a ring isomorphism R(X) ~ R(Y) and, in particular,
kod(X) = kod(Y). See [94].

Proof Every equivalence is a Fourier—Mukai transform, i.e. there exists a com-
plex P € DP(X x Y) such that ®p : DP(X)—=DP(Y) is isomorphic to the
given equivalence. In particular, its right and left adjoint are isomorphic. Since
the kernel of a Fourier—-Mukai equivalence is uniquely determined, this yields
Q = PV ® q¢*wx[n] ~ PV ® p*wy|n], where n = dim(X) = dim(Y) (see
Proposition 4.1 or Corollary 5.21).

Clearly, g : D’(Y) —=DP(X) as a quasi-inverse of ®p : DP(X) —=DP(Y)
is an equivalence, but one can also show that ®o : DP(X)—=DP(Y) (note
the change of the direction) is an equivalence. This will be done first. (For an
alternative proof of this fact see Remark 7.7.)

Consider the composition

Pp

DP(X) —Z o DB(Y) — e DP(X),

which is isomorphic to the identity, for ®p is fully faithful and &g 4 ®p. On the
other hand, we have computed in Proposition 5.10 the kernel of this equivalence
as R = m3.(755P ® 7539). Due to the uniqueness, this yields R ~ Oa €
DP(X x X).

Applying the automorphism 75 : X x X —= X x X that interchanges the two
factors, one finds

* * * * *
On >~ 750 >~ T19R >~ T3, 713 (T]5P @ m53Q)
* *
~ 7T13*(7r12Q ® 7T23P).
Hence, the composition

Po dp

DP(X) —> D(Y) — DP(X) (6.1)

is also isomorphic to the identity. As this is the composition of ®o with
its adjoint functor, this proves that ®g : DP(X)—=DP(Y) is fully faithful
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(cf. Corollary 1.23). Note that so far, we have only used that ®p is fully faithful
and that its adjoints are given by ®o.

Now, interchanging the role of P and Q and using that ®g : D*(Y) —DP(X)
as a quasi-inverse of ®p : DP(X) —=DP(Y)) is fully faithful, the same arguments
prove that

Ip o
DY(Y) — DP(X) —— DP(Y) (6.2)

is isomorphic to the identity.
The two facts, that both compositions (6.1) and (6.2) are isomorphic to the
identity, yield the assertion that with ®p also ®g : D?(X)—=DP(Y) is an

equivalence.
Next, use the kernel QP € DP((X x X) x (Y x Y)) to define the Fourier—
Mukai equivalence

Domp : DP(X x X) —= DP(Y x Y).

Denote ®goxp(t.wh) by & € DP(Y x Y). (We use the same notation ¢ for both
diagonal inclusions X &= X x X andY &= Y xY.)

Then ®s : DP(Y)—=DP(Y) is an equivalence that can be computed as the
composition (see Exercise 5.13):

o) q>L*“’§< op
DP(Y) — DP(X) —— DP(X) — DP(Y).
Since <I>L*w§( is isomorphic to S% [—kn] (see Example 5.4) and since any equival-

ence commutes with the Serre functors Sx and Sy, we obtain ®g ~ S¥[—kn].

Hence, due to the uniqueness of the Fourier—-Mukai kernel S ~ L*w{i.

Thus, for all k € Z we have ®omp (1 w) ~ t,wk. Since ®goxp is an equi-
valence, we obtain isomorphisms

Hom y x x (1%, 1w’ ) =~ Homy sy (12w, tow?)
for all k,¢ € Z. The case k = 0 and ¢ > 0 induces the claimed bijection
HY(X,w%) = Homx x x (1:Ox, Law)
~ Homy xy (1.Oy, t,w¥ ) = HO(Y,wh).

As in the proof of Proposition 4.11, one shows that the multiplicative structure
of the canonical ring R(X) = @,., H(X,w%) is given by composition and
hence compatible with any functor. In other words, the induced bijection

R(X) =P H(X,w§) ~ P H(Y,wy) = R(Y)
£20 £>0

is indeed a ring isomorphism. a
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Exercise 6.2 Show that the same arguments also provide a ring isomorphism
of the anti-canonical rings, i.e. R(X,w%) ~ R(Y,w} ) and hence kod(X,w%) =
kod(Y, w3 ).

Note that both cases together provide an alternative proof of the original result
of Bondal and Orlov (see Proposition 4.11) for the case that both canonical
bundles, wx and wy, are (anti-)ample.

Remark 6.3 The techniques of the above proof can be used to compare other
invariants of X and Y, which are not directly relevant to the birational geometry
of derived equivalent varieties treated in this chapter. In this sense, the following
is a digression which may be skipped.

In the discussion we follow Orlov’s presentation in [94], but we also recommend
[29, 75].

For any smooth projective variety X one introduces the bigraded ring

X) := @D HA; o(X) with HA; ¢(X) := Extly, x (1.O0x, Law).

The algebra structure is defined by composition in D?(X x X).
This bigraded ring contains several interesting substructures. We have
encountered the canonical ring R(X) which can be identified with the subring

Do HAo,(X)-

In another direction, one may look at the Hochschild cohomology of X, i.e. at
the subring

HH*(X @ HA; o EBExtXXX(L*OX, 1,0x)

or at the Hochschild homology
= @ HAzl(X) >~ @EXEZ(XX(L*O)(, L*wx),

which can be viewed as a graded module over HH*(X).
As was shown in the proof of Proposition 6.1, any equivalence

®:DP(X) — DP(Y)
induces an isomorphism

@HAN @HA” R(Y)

of graded rings. As should be clear from a quick look at that proof, this
isomorphism extends to an isomorphism

OHH . HH(X) —> HH(Y)

which respects the bigrading and the multiplicative structure.
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Let us study more closely the two induced isomorphisms
OHH™ . HH*(X) ——> HH*(Y) and &HH. . HH,(X) — HH.(Y).

The composition in HH(X) endows the Hochschild homology HH,(X) with
the structure of a module over the Hochschild cohomology HH*(X). Derived
equivalences preserve this module structure.

To make the isomorphisms between the Hochschild cohomology of X and Y
more transparent, we invoke a result usually attributed to Swan [109] and put
in the geometric context by Kontsevich. It says that the spectral sequence (see

(3.16), p. 85)
EN? = HP(X x X,Ext?(1.0x,1.0x)) = Ext’T9(1,0x,1,0x)
degenerates, i.e.

Ext’(1,0x,1,0x) ~ @ HP(X x X, Ext?(1.O0x,1.O0x)).
p+q=i

Using Ext9(1.Ox, 1.0x) =~ N Tx (see Example 11.9), this yields

. q
HH'(X) = Ext'(1.0x,1.0x) ~ P HP(X, )\ Tx).
p+g=i
The isomorphism that appears naturally in the argument is called the
Hochschild—Kostant—Rosenberg isomorphism. Be aware that this isomorphism
does not respect the multiplicative structures given on the two sides. Conjectur-
-1
ally, multiplying by /td(X)  is needed to make it multiplicative.
For i = 0 we do not find anything interesting, but already the case i = 1
provides us with the highly non-trivial isomorphism

QHH' . [O(X, Tx) & H'(X,0x) — HO(Y,Ty) @& H (Y, Oy)

for any equivalence ® : D”(X)—"~DP(Y). We will provide a geometric inter-
pretation for this in Section 9.4 (see Proposition 9.45). Roughly, H!(X,Ox),
respectively, H°(X, Tx), are the tangent spaces of the Picard group, respectively
the group of automorphisms, of X.

Similarly, the induced isomorphisms of Hochschild homology can be better
understood if combined with the degenerate spectral sequence

Eg,q = Hp(X x X, gxtq(L*Ox,L*wX)) = EtiJrq(L*Ox,L*wX),

which yields the Hochschild-Kostant—Rosenberg isomorphism for Hochschild
homology

HH,(X) = Ext'(1.0x, wx) ~ @ HY(X, \"Tx @ wx).

pt+g=i
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For a derived equivalence ® the induced isomorphism ®H- yields the
isomorphism alluded to before (see Remark 5.40)

D XN Txowx) > @ HY,N\'T ow).
p+q=i p+qg=1i

As was remarked in Remark 5.40, one can identify the direct sum with the
(i — n)-th column of the Hodge diamond and one thus obtains isomorphisms

D won~ @ w0y

pP—q=i—n pP—q=i—n

It is believed that for an equivalence
®: DP(X) — DP(Y)

the two isomorphisms ®#7+ and ®¥ commute under these identifications up to
twisting with v/td. More precisely, the following diagram should commute:

HH «

HH,(X) —— HH,(Y)

wd(X) l l V5d(Y)
H*(X,C) ——~ H*(Y,C).

The evidence for this conjecture is manifold. E.g. Caldararu shows that it
holds true on the image of the Mukai vector, which itself is contained in HHj.

6.2 Geometrical aspects of the Fourier—Mukai kernel

In this section we prove a series of technical but useful facts that shed light on
the geometry of the support of the Fourier—-Mukai kernel P of an equivalence

®p : DP(X) —= DP(Y).

Sometimes, P is a locally free sheaf on X X Y, e.g. the Poincaré sheaf on the
product of an abelian variety and its dual (see Chapter 9), and then nothing
interesting can be said about supp(P), which is just all X x Y. However, often
the kernel P is concentrated on a smaller subvariety, e.g. on the graph of a morph-
ism or a correspondence, and then it encodes information about the geometric
relationship between X and Y. This usually happens if the canonical bundles of
the varieties enjoy some kind of positivity.

The results, which will be presented as a series of lemmas, are in the original
literature often implicitly contained in the proofs of deeper results, some of which
shall be discussed later. Most of the material is taken from [63].
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Throughout this section we shall consider a Fourier-Mukai equivalence
®p : DP(X) —= DP(Y)
with Fourier-Mukai kernel P € D?(X x Y). Its support (see Definition 3.8)

supp(P) = |_Jsupp(H'(P)) C X x Y,

is a closed subset with possibly many irreducible components. We also recall that
by Lemma 3.32 and the fact that taking the tensor product with a line bundle
does not change the support of a complex one has:

supp(P) = supp(P") = supp(Pr) = supp(PL)-

This is in fact true without ®p being an equivalence. For the stronger state-
ment Pr =~ Pr, one needs ®p to be an equivalence. Also note that P ® q*wx =~
P @p*wy in this case (see Remark 5.22).

We can hope to extract geometrically meaningful information from the support
supp(P) of the kernel of a Fourier-Mukai equivalence only if supp(P) is a proper
subset. This is, however, not always the case. E.g. the Poincaré bundle is a line
bundle and hence has support on the whole product (see Chapter 9). In fact, if
supp(P) = X x Y, then the two canonical bundles wx and wy are both of finite
order, see Exercise 6.10.

In the sequel we will often abbreviate

H' = H'(P)
and use H! ® ¢*wy ~ H' @ p*wy .
Lemma 6.4 The natural projection supp(P) ==X is surjective.
Proof We shall use the spectral sequence (see (3.9), p. 80)
By = Tor_(H*,q"'k(z)) = Tor_ 1. (P.a k()

and the fact that Zor;(F, ) is local (and hence trivial for coherent sheaves F, &
with disjoint support).

Thus, for a closed point x € X in the complement of g(supp(P)), the derived
tensor product P ® ¢*k(x) is trivial. Therefore, ®p(k(x)) ~ 0, which is absurd
for the equivalence ®p : DP(X) == DP(Y). O

As the situation is completely symmetric and supp(P) = supp(Pr),
one immediately derives from the lemma also the surjectivity of the other
projection supp(P)—==Y.

Corollary 6.5 There exists an integer i € Z and an irreducible component Z
of supp(H?) that projects onto X. o

Again, the corollary applies also to the projection to Y, but a priori the integer
¢ and the irreducible component Z might have to be chosen differently then.
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Lemma 6.6 Let C be a complete reduced curve and let p : C—=X XY be a
morphism with image in supp(P). Then

deg(¢*q*wx) = deg(¢™p*wy).

In other words, the pull-backs q*wx|suppp) and P*wy|supp(p) are numerically
equivalent.

Proof We may assume that the curve C' is irreducible and smooth. Then there
exists an integer i with p(C) C supp(H?), i.e. the underived pull-back ¢*H' is a
sheaf with a possibly non-trivial torsion part T(¢*H?), but such that its locally
free part F := ¢*H!/T(p*H") is non-trivial. In other words, F is a locally free
sheaf of positive rank, say r.

On the other hand, as ®p is an equivalence, one has P ® ¢*wx ~ P ® p*wy
and thus H! ® ¢*wx ~ H' ® p*wy. Pulled-back to C it yields F ® ¢*q*wx ~
F ® ¢p*p*wy and after taking determinants ¢*q*w’ ~ ¢*p*wy.. This suffices to
conclude. |

Corollary 6.7 The canonical bundle wx is numerically trivial if and only if
the canonical bundle wy is.

Proof Suppose wy is numerically trivial. Then in particular deg ¢*q*wyx = 0
for any curve ¢ : C—=X x Y. Thus, the lemma shows that p*wy |supp(p) is
numerically trivial.

A line bundle is numerically trivial if and only if the line bundle and its dual
are both nef (see Definition 6.26). Hence, Lemma 6.27 applied to the surjective
morphism supp(P) ==Y (see Lemma 6.4) shows that wy and wj are also both
nef. Hence, wy is numerically trivial as well. O

Corollary 6.8 Suppose Z C supp(P) is a closed subvariety such that the
restriction of wx (or its dual w¥ ) to the image of ¢ : Z—=X is ample. Then
p: Z—=Y is a finite morphism.

Proof Suppose p: Z—=Y is not finite. Then there exists an irreducible curve
¢ :C < Zsuch that poy : C—Y is constant. Thus, p*p*wy is a (numeric-
ally) trivial line bundle on C'. Lemma 6.6 shows that ¢*¢*wx is also numerically
trivial. As p o ¢ is constant, the composition ¢ o ¢ is necessarily non-trivial.
Since wx (or its dual w%) is ample on ¢(Z) and hence on ¢(p(C)), this yields a
contradiction. a

Here is a refined version of the same principle.

Lemma 6.9 Let Z C supp(P) be a closed irreducible subvariety with normal-
ization u : Z —=Z. Then there exists an integer r > 0 such that

X r %, T
TxWyxy = TyWy,

where Tx ;= qo u and Ty = po .
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Proof Let us first prove the following general fact:

e Let Z be a normal variety over a field k and let F be a coherent sheaf on
Z generically of rank r. If Ly, Ly € Pic(Z) are two line bundles such that
F® L ~F® Ly, then L] ~ Lj.

Proof. Clearly, we may divide out by the torsion of F and can, therefore,
assume that F is torsion free to begin with (the generic rank is unchanged while
doing this). Since Z is normal, this means that F is locally free on the open
complement U of a codimension two subset.

As det(F @ Li|y) ~ (det(F) ® LI)|y, one has Li|y ~ L5|y. The induced
trivializing section s € H(U, L1 ® L, ") extends to a section § € H*(Z, Li®@ Ly "),
which automatically is trivializing and, hence, induces an isomorphism L] ~ L.
For the last two statements one uses codim(Z \ U) > 2 and the normality of Z.

O

Now let Z C supp(P) be a closed irreducible subvariety and let p : 7 —=7 be
its normalization. Then there exists an integer i with Z C supp(H?), i.e. u*H?*
is a coherent sheaf on Z of generically positive rank, say r > 0. Pulling-back
H' ® ¢*wx ~ H' ® p*wy via p to the normal variety Z allows one to conclude
by using the above general fact. O

Exercise 6.10 Suppose ®p : D?(X) "~ DP(Y) is a Fourier-Mukai equivalence

with kernel P € DP(X x Y)) such that supp(P) = X x Y. Show that wx and wy
are both of finite order. (In fact, by Proposition 4.1 of the same finite order.)

Lemma 6.11 The fibres of the projection supp(P) —= X are connected.

Proof Suppose there exists a point € X over which the fibre is not connected.
Write supp(P)N({z} xY) = Y1 UY3 as a disjoint union of two non-empty closed
subsets Y7,Y, C Y.

Recall that by Lemma 3.29 we have supp(P) N ({z} x Y) = supp(P|{z3xv)-
Hence, ®p(k(z)) has a disconnected support and can, therefore, be written as a
direct sum F7 @ Fy with supp(F?) =Y;, i = 1,2 (cf. Lemma 3.9).

In particular, End(®(k(z)) = End(F}? @ F3) is not a field. This contradicts
k = End(k(z)) ~ End(®(k(z))). |

Corollary 6.12 Let Z C supp(P) be an irreducible component that surjects
onto X. If dim(Z) = dim(X), then q¢ : Z—=X is a birational morphism.
Moreover, if such a component exists, then no other component of supp(P)
dominates X .

Proof Let us prove the last assertion first. Recall that due to Lemma 6.11 every
fibre of supp(P)— X is connected. Consider the generic fibre of |J Z; — X,
where the Z; are the irreducible components of supp(P) different from Z. It is
either empty or contains the corresponding (zero-dimensional!) fibre of Z — X.
The latter would imply Z C |J Z; which is absurd.
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In order to prove that ¢ : Z— X is birational, we pick a generic point z € X.
The intersection

{y1,.. -,y :=ZN({x} xY)

is finite and disjoint from any other irreducible component of supp(P). Applying
the lemma proves £ =1, i.e. Z— X is birational. O

Remark 6.13 So far we have considered the irreducible components of
supp(P) with their reduced scheme structure, which is not very natural but
usually sufficient. If a component Z as in the corollary exists, then the assertion
is in fact still valid even when Z is considered with its natural scheme structure,
which a priori might be non-reduced.

More precisely, under the same assumptions one shows that for a generic point
x € X the image ®p(k(z)) is of the form k(y)[m]. Indeed, F* := &p(k(z)) is
concentrated in some point y € Y and Hom(F*, F*[i]) = Hom(k(z), k(x)[i]) =0
for ¢ < 0. Then conclude by Lemma 4.5.

The following is a refinement of Corollary 5.23.

Corollary 6.14 Suppose there exists a closed point xo € X such that

Dp(k(w0)) ~ K(yo)

for a certain closed point yg € Y. Then one finds an open neighbourhood xy €
U C X and a morphism [ : U—Yy with f(x9) = yo and such that

Pp(k(x)) ~ k(f(2))
for all closed points x € U.

Proof The assumption says in particular that the fibre over z( of the morphism
supp(P) — X is zero-dimensional. This clearly holds true then for all points in
an open neighbourhood U C X of xg. In other words, for any = € U the complex
®p(k(x)) is concentrated in points. As before, Hom(®p (k(z)), Pp(k(z))[i]) =0
for ¢ < 0. Thus, Lemma 4.5 applies and shows that ®p(k(z)) is of the form
k(y)[m]. Due to semi-continuity the shift m needs to be constant locally around
zo € U.

To conclude, one imitates the proof of Corollary 5.23 in order to verify that
the induced map U—Y (of sets of closed points) is induced by an honest
morphism. O

6.3 Nefness under derived equivalence

After the technical preparations in the last section, the following result is proven
easily. (For the definition of nef and the numerical Kodaira dimension see
Section 6.5.)
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Proposition 6.15 (Kawamata) Let X and Y be smooth projective varieties
with equivalent derived categories DP®(X) and DP(Y). Then the (anti-)canonical
bundle of X is nef if and only if the (anti-)canonical bundle of Y is nef. See [63].

Proof Due to Theorem 5.14 we know that any equivalence
F :DP(X) — DP(Y)

is of the form ®p with a uniquely determined kernel P € D”(X x Y).

Consider the projection ¢ : supp(P)—=X which is surjective due to
Lemma 6.4. Following Lemma 6.27 we know that wx is nef if and only if g*wyx
is a nef line bundle on supp(P).

Suppose wy is nef. Then again due to Lemma 6.27 the line bundle p*wy is nef
on supp(P). In other words, deg(p*p*wy) > 0 for any curve ¢ : C' —supp(P).
By Lemma 6.6, deg(p*p*wy) = deg(p*¢*wx). Thus, deg(¢*q*wx) > 0 for any
curve ¢ : C —supp(P), i.e. ¢*wx is a nef line bundle on supp(P).

Similarly, one proves that if wy- is nef, then so is w¥%. Of course, interchanging
the role of X and Y and repeating the arguments also shows that wx (or w¥)
nef implies wy (respectively w3-) nef. |

An immediate consequence is the following result, which has been stated
already earlier as Corollary 6.7.

Corollary 6.16 If X and Y are smooth projective varieties with equivalent
derived categories, then wx is numerically trivial if and only if wy is numerically
trivial.

Proof Just note that a line bundle is numerically trivial if and only if the line
bundle and its dual are both nef. a

Remark 6.17 The corollary complements nicely Proposition 4.1 which in
particular shows that wx is trivial if and only if wy is trivial.

Proposition 6.18 (Kawamata) Let X and Y be smooth projective varieties
with equivalent derived categories DP(X) and DP(Y). Then equality of numerical
Kodaira dimensions holds: v(X) = v(Y). See [63].

Proof This time we apply the stronger Lemma 6.9.

We denote by H* the cohomology sheaves H!(P). Now apply Corollary 6.5
which shows that there exists at least one cohomology H*® and an irreducible
component Z of supp(H?) such that p : Z —=Y is surjective.

Denote the normalization of Z by p : 7 —= 7 and the two projections to X
and Y by mx = q o p, respectively my = p o . Due to Lemma 6.9 one finds an
integer r > 0 with 7w’ ~ 7wy

Now use the general fact that v(L) = v(L") for any line bundle L and any
r # 0 and Lemma 6.30 to prove v(X,wx) > v(Y,wy). But due to the symmetry
of the situation, this is enough to conclude v(X,wx) = v(Y,wy). ad
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6.4 Derived equivalence versus birationality

As has been proved in Sections 6.1 and 6.3, the (numerical) Kodaira dimension
of a smooth projective variety is an invariant of its derived category. But it is
also a birational invariant. So one might, and should, wonder whether birational
varieties have equivalent derived categories and, conversely, whether derived equi-
valent varieties are birational. In this generality, the answer to both questions
is negative. If, however, the Kodaira dimension or the Kodaira dimension of
the anti-canonical bundle is maximal, then an affirmative answer to the second
question has been obtained by Kawamata. Moreover, a very precise conjecture
concerning the first one has been formulated by Bondal, Orlov, and Kawamata.

This section presents a few results clarifying some of these questions. More can
be found in the later chapters. In particular, we shall study examples of vari-
eties with equivalent categories which are not birational (e.g. certain abelian
varieties or K3 surfaces, see Chapters 9 and 10) and of birationally equivalent
varieties which realize inequivalent derived categories (e.g. a simple blow-up, see
Chapter 11).

Proposition 6.19 (Kawamata) As above, let X and Y be two smooth pro-
jective varieties over an algebraically closed field. Suppose there exists an exact
equivalence

~

DP(X) — DP(Y).

If kod(X,wyx) = dim(X) or kod(X,w%) = dim(X), then X and Y are
birational and, more precisely, there exists a birational correspondence

7
ﬂ:/ Y
X Y

with Thwx ~ Tywy . See [63].

Proof We shall only treat the case kod(X,wx) = dim(X), the other being
completely analogous.
Let H C X be a smooth ample hypersurface. The exact sequence

0 — O(—H) @) Ou 0
induces an exact sequence
0 — HOw%(—H)) — H(w%) — H(w|n)

for any £. If kod(X,wx) = dim(X), then dim H°(X,w%) grows like ¢4m(X) On
the other hand, as dim(H) < dim(X), the dimension of H°(w’|g) has smaller
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growth. Thus, for £ > 0 the line bundle w% (—H) has a section. In other words,
W& (—H) ~ O(D) for some effective divisor D or, equivalently,
W ~ O(H) ® O(D)

with H ample and D effective. (This fact is called Kodaira’s lemma.)

Due to Lemma 6.4 there exists an irreducible component Z of supp(P) that
surjects onto X. Moreover, the pull-backs of (some power of) wx and wy
under mx : Z%X7 respectively my : Z—>Y coincide, where Z—>7 is the
normalization (see Lemma 6.9).

Let us show that

Ty : Z\?T;(l(D) —Y

is quasi-finite, i.e. has finite fibres. In other words, at most curves completely
mapped into D via wx are contracted by the projection to Y.

(D)

s
2\

X D Y

Suppose that there exists an irreducible curve C' C Z contracted by my and
such that C' ¢ 75! (D). Then, deg 7 (wy)|c = 0. On the other hand,

deg mx (wx)lc = (1/€) degmx O(H)|c,
as the intersection of 7x(C) and D consists of at most finitely many points.
Moreover, since C'is contracted by 7y, the other projection 7y : C —= X must be
finite. As H is ample this implies deg 7% O(H)|c > 0. Altogether, this contradicts
Wkl ~ 13wy |c implied by Lemma 6.9 or the more elementary deg(mwx) =
deg(m}wy) of Lemma 6.6.

Hence, Z —Y is generically finite and thus dim(Z) < dim(Y’). On the other
hand, Z dominates X and therefore dim(X) < dim(Z). As dim(X) = dim(Y’),
this shows that the correspondence X <& zZ Iy maps generically finitely
onto X and onto Y.
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Now apply Corollary 6.12 to conclude that we have in fact constructed a

birational correspondence
Z
us 7 \\‘ﬂ'y
X Y.

Moreover, by construction 73w’ ~ 73wy for some r > 0.
On the other hand,

Tywx + O (Z aiEZ-> ~ mywy + O (Z agEi) ,
where the E; are exceptional with respect to mx or wy. (Well, this can only be
ensured if, e.g. Zis smooth, but we may actually replace Z by a desingularization.
In fact, if the isomorphism exists on a desingularization, it also exists on the
normal variety Z.)

Passing to the r-th power shows O(>_r(a; — a})E;) ~ O. Thus, it suffices to
show that whenever a linear combination Y «; F; is linearly equivalent to zero,
then all o; are trivial. In our case, this would yield r(a; — a;) = 0 and, hence,
a; = aj.

Here is the sketch of the argument. Away from the pairwise intersections of
the different exceptional divisors, they can all be contracted at once. So we
suppose for simplicity that there is a single contraction Z — X contracting all
E;. Suppose > o;E; is linearly equivalent to zero with «; < 0 for ¢ < k and
a; > 0 for i > k. We may assume k > 0, otherwise change the global sign.

Now, let s € H°(O(— Zlf a;F;)) be the unique section vanishing to order —ay
along the divisors E;, i = 1, ..., k. A trivializing section of O(>_ «; F;) multiplied
by s would yield a section of O(} ;5 @;E;) vanishing along the divisors £;
with i < k. However, O(3_ ;5 @;£;) admits only one global section up to
scaling, namely the one that vanishes only along E;, ¢ > k (of order «;).

(Indeed, by contracting the exceptional divisors F;, i > k + 1, two sections of
O i>p1 @i l) give rise to two functions on the complement of a closed subset
of X of codimension > 2 which by Hartogs differ by a scalar factor.)

This yields a contradiction.

If we don’t want to assume the existence of the single contraction, we
have to work with a morphism Z O U—V onto a quasi-projective variety
that can be dominated by open subsets in X or Y whose complement is of
codimension two. |

Let us show how to use the arguments of the last proof for yet another
alternative proof of Proposition 4.11 (cf. Exercise 6.2).

Corollary 6.20 If X and Y have derived equivalent categories and wx or w¥
1s ample, then X ~ Y.
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Proof Consider the birational correspondence Z C X XY constructed above. If
C C Z is a curve contracted by the projection my : Z—Y, then mjwy |c ~ Oc¢,
but 7% wx|c is ample. This contradicts 7% wx =~ 75wy . To be more precise we
have to pass to the normalization Z—Z , but this is a finite map.

Hence, Z—Y is an isomorphism. So, there exists a birational morphism
wx Y ~ Z— X with n%wyx ~ wy. The determinant of the differential of 7 x
can be seen as a section of T wx ® wy ~ Oy, which is either trivial or non-
vanishing everywhere. Thus, since 7x : Y ~ Z— X is birational, it is in fact
smooth and hence an isomorphism.

The argument for w% ample is identical. O

Definition 6.21 Two varieties X andY are called K-equivalent if there exists

a birational correspondence
7:7 ‘,

X Y
with Tywx ~ Ty wy .

Corollary 6.22 Two D-equivalent varieties X andY with X of mazimal (anti-
canonical) Kodaira dimension are K-equivalent. |

Remark 6.23 Without this additional assumption the statement is false. E.g.
we will present work of Mukai showing that there exist non-isomorphic and
hence non-birational abelian varieties with equivalent derived categories (see
Chapter 9). But even if one adds the assumption that X and Y are birational,
D-equivalence does not in general imply K-equivalence (see [114] and Section 12.2).

The converse of the corollary is the following.

Conjecture 6.24 Let X and Y be two smooth projective varieties. If X and
Y are K-equivalent, then they are also D-equivalent.

Thus, for birationally equivalent varieties of maximal (anti-canonical) Kodaira
dimension one expects:

D —equivalent <= K — equivalent.

The conjecture also predicts that two birational Calabi—Yau varieties, i.e. varie-
ties with trivial canonical bundle, are derived equivalent. Some progress has
been made in low dimensions (see Chapter 11 for more details), but the general
question, even for Calabi—Yau manifolds, is still wide open.

As is probably clear from a closer inspection of the above proof, there is
no reason to hope that the birational correspondence induces the sought for
equivalence. In fact, there are explicit examples known where this is not true (cf.
Section 11.4).
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6.5 Recap: Kodaira dimension, canonical ring, etc.

This section recalls a few definitions and facts from higher-dimensional algebraic
geometry.

Definition 6.25 Let X be a smooth projective variety and let L € Pic(X). The
Kodaira dimension kod(X, L) of L on X is the integer m such that

R°(X, L) := dim H(X, L")
grows like a polynomial of degree m for ¢ > 0. By definition, kod(X, L) = —o0
if hO(X, L*) =0 for all £ > 0.

There are equivalent descriptions of the Kodaira dimension (cf. [115]): E.g.
under the assumption that kod(X, L) > 0, one has

kod(X, L) = max{dim(Im(¢y¢)) | £ > 0} (6.3)
= trdeg;, Q(R(X, L)) — 1. (6.4)

Here, o1 : X --» Ph°(L)=1 ig the rational map defined by the linear system
|LY|, R(X, L) is the canonical ring of L, i.e.

R(X,L):= P H(X, L
>0
and Q(R(X, L)) denotes its field of fractions. Note that kod(X, L) < dim(X) for

any line bundle L.
The case that interests us most here is when L ~ wx. Then one calls

kod(X) := kod(X,wx)
the Kodaira dimension of X and
R(X) := R(X,wx)

the canonical ring of X.

A standard fact in higher dimensional algebraic geometry says that the
Kodaira dimension is a birational invariant, i.e. if X and Y are two birational
smooth projective varieties, then kod(X) = kod(Y") (see [115]).

Definition 6.26 A line bundle L on a proper scheme X over a field k is called
nef if for any morphism ¢ : C—= X from a complete reduced curve C one has

deg(¢*L) > 0.

Of course, it suffices to test curves that are embedded into X, as one might
replace ¢ : C — X by the image C’ = ¢(C) (use deg ¢* L = deg(y) - deg(L|c)).
In another direction, it suffices to test ¢ : C' — X with C smooth and irreducible,
as we can always pass to the normalization of C.
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The degree of a line bundle M on a curve C over a field k is defined by the
Riemann—Roch formula

X(C, MY = deg(M) - £ + x(C, O¢).

Clearly, a line bundle L is nef if and only if some positive power L?, i > 0, is nef.
Here are a few simple facts for nef line bundles:

Lemma 6.27 Let 7 : Z—=X be a projective morphism of proper schemes and
L € Pic(X).

i) If L is a nef line bundle on X then w*(L) is nef.

i) If w is surjective, then L is nef if and only if 7*(L) is nef.
Proof Let ¢ : C—=Z be a given curve. Then the composition with 7 yields
7o : C—X. This immediately shows 1).

To see ii), one constructs for any irreducible curve ¢ : C — X a ramified cover

1 : C—=C by an irreducible curve C such that pop: C — X factorizes over
Z — X. Using deg(v*p*L) = deg(v) - deg(¢* L) this finishes the proof.

X

The construction of ¥ : C —=C is standard algebraic geometry: By working
with the fibre product C x x Z, we may reduce to the claim that any dominant
projective morphism Z — C onto a curve admits a multisection. By embedding
Z into some PV x C this may be achieved by intersecting with a generic linear
subspace in PV of the appropriate dimension. a

By definition, the intersection number ([M]™.W) of a line bundle M on a
proper scheme W of dimension m is the degree m coefficient of the polynomial
X(W, M) (cf. [33]).

Definition 6.28 The numerical Kodaira dimension v(X, L) of a line bundle
L on a projective scheme X is the mazimal integer m such that there exists a
proper morphism ¢ : W — X with W of dimension m with
(™ (D)™ W) # 0.
As in the definition of nefness, it suffices to test closed subschemes W C X.
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Remark 6.29 A line bundle L is called numerically trivial if v(X,L) = 0 or,
equivalently, if for any curve ¢ : C'—= X one has deg*L = 0. Clearly, L is
numerically trivial if and only if L and L* are both nef.

In general, there is no relation between the Kodaira dimension and the
numerical Kodaira dimension. Only if L is nef, then kod(X,L) < v(X,L)
(Exercise!).

For the canonical bundle, one writes

v(X) =v(X,wx)
and calls it the numerical Kodaira dimension of X.

Lemma 6.30 Let 7w: Z—=X be a projective morphism of projective schemes
and L € Pic(X).

i) Then v(X,L) > v(Z,7*L).
i) If m: Z—X s surjective, then v(X,L) =v(Z,7*L).

Proof The first assertion follows from the definition, as any proper ¢ : W — 7
can be composed with 7.
To see ii), consider a proper morphism ¢ : W —=X. Then there exists a

generically finite surjective morphism 1 : W —=W and a morphism ¢ : W—Z
such that o @ = ¢ 01). The existence is ensured by arguments similar to those
in the proof of Lemma 6.27. Since

([p*m " L]™ W) = deg(¢) - ([¢" L™ W),
this shows v(X, L) < v(Z,n*L). a
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EQUIVALENCE CRITERIA FOR FOURIER-MUKAI
TRANSFORMS

In the preceding chapters we have studied equivalences between derived
categories of smooth projective varieties and how they are reflected by the geo-
metry, cohomology, etc. The time is ripe to develop criteria that allow us to decide
whether a given Fourier—Mukai transform is in fact an equivalence. In order to do
this, we shall follow the procedure outlined in Chapter 1. So we will first try to
understand full faithfulness of a Fourier—-Mukai transform. This will be discussed
in Section 7.1. Then, in Section 7.2, we will address the question under which cir-
cumstances a fully faithful Fourier—Mukai transform does define an equivalence.
As it turns out, this is often the easier part of the programme. Section 7.3, where
varieties with torsion canonical bundle and their canonical cover are investigated,
is logically independent and can also be read later.

We consider smooth projective varieties over an algebraically closed field k of
characteristic zero. Earlier, this was imposed in order to simplify the arguments,
but here it is crucial and we will point out where it comes in.

7.1 Fully faithful

Consider the Fourier-Mukai transform ®p : DP(X)—=DP(Y) between the
derived categories of two smooth projective varieties X and Y given by an
object P € DP(X x Y). For the following proposition compare the references
[14] and [18].

Proposition 7.1 (Bondal, Orlov) The functor ®p is fully faithful if and
only if for any two closed points x,y € X one has

Hom(®p (k(x)), ®p(k(y))[i]) = { ]g Z‘( i ;Z (ol::bdi Z‘<:0007“ i > dim(X).

Proof The proofis an application of Proposition 1.49. The verification of all the
hypotheses is rather long and we will split the proof into several steps. We closely
follow Bridgeland’s account of the proof (cf. [18]).

Step 1. Points are spanning Here we just recall Proposition 3.17 which says
that objects of the form k(x)[i] with © € X a closed point and ¢ € Z form a
spanning class in DP(X).
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Since the Fourier-Mukai transform F := ®p admits a left adjoint G := ®p,
and a right adjoint H := ®p, (cf. Proposition 5.9), we may apply Proposi-
tion 1.49. Thus, F' is fully faithful if and only if the natural homomorphisms

Hom(k(z), k(y)[i]) —— Hom(F(k(x)), F(k(y))[i])

are bijective for arbitrary closed points x,y € X and any integer i. For x # y
this holds true by assumption. Thus, it remains to discuss the case x = y. In this
case, the assumption a priori yields the bijectivity only for ¢ & [1, dim(X)].

Step 2. Reduction to G(F(k(x))) ~ k(x) By Lemma 1.21 we know that the
bijectivity of

Hom(k(z), k(z)[i]) ——— Hom(F(k(x)), F(k(z))[i) (7.1)
is equivalent to the bijectivity of

OGk(x)

Hom(k(x), k(z)[i]) —— Hom(G(F (k(x))), k(x)[4]), (7.2)

which is induced by the adjunction morphism g : G o F'—=idp»(x.
If we can show that G(F(k(x))) ~ k(x), then the adjunction morphism

Ir(a) : G(F(k(2))) — k()

is either an isomorphism, which immediately yields bijectivity for all ¢ in (7.2),
O Gi(z) 18 zero.

(Recall that we assumed that k is algebraically closed and, hence, that k(x) is
isomorphic to k concentrated in x.)

We can actually exclude that gy (,) is zero, since the composition of

F(gr@)) : F(G(F(k(2)))) —— F(k(x))
with the adjunction morphism
hi(ka)) : F(k(x)) —— F(G(F(k(2))))
yields the identity (see Exercise 1.19) and F(k(z)) # 0 due to the assumption

that End(F(k(z))) = k.

Step 3. Proof of G(F(k(x))) ~ k(x) under additional hypothesis Let us
fix a closed point € X. We shall first show G(F(k(x))) ~ k(x) under two
additional assumptions:

i) G(F(k(x))) is a sheaf and
ii) The homomorphism (7.1) is at least injective for ¢ = 1 (which is equivalent
to the injectivity of (7.2) for i = 1).
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Let us denote G(F(k(z))) by F, which is a sheaf due to i). Then by adjunc-
tion and assumption one has Hom(F, k(y)) = Hom(F (k(x)), F(k(y))) = 0 for
any closed point y # x. Hence, F is concentrated in x. As explained earlier,
the adjunction morphism 0 := gy(,) : F—>Fk(z) is not trivial and hence sur-
jective. We have to show that ¢ is in fact bijective. Consider the short exact
sequence

0 —— Ker(4) F k(x) 0. (7.3)

Clearly, Ker(9) is also concentrated in k(z) and in order to show Ker(d) ~ 0 it
suffices to prove Hom(Ker(d), k(z)) = 0. Applying Hom( ,k(x)) to (7.3) and
using Hom(F, k(z)) = k, yields the exact sequence

0 —— Hom(Ker(9), k(x)) — Hom(k(x), k(z)[1]) 0 Hom(F, k(z)[1]).

The last map is injective due to ii) and hence Ker(d) = 0.

Step 4. Verification of the additional hypothesis i) We shall use the fol-
lowing general lemma, which is a variation on the fact that sheaves of the form
k(y) are spanning (cf. Proposition 3.17).

Lemma 7.2 Let X be a smooth projective variety, x € X a closed point, and
F* € DP(X). Suppose Hom(F*, k(y)[i]) = 0 for any closed point y # = and any
i € Z and Hom(F*, k(z)[i]) =0 for i <0 ori > dim(X).

Then F* is isomorphic to a sheaf concentrated in x € X.

Proof We will abbreviate the cohomology sheaves of F*® by HY. For a fixed
point y € X we consider the spectral sequence (see (2.8) p. 58)

Ey? := Hom(H ™, k(y)[p]) = Hom(F*, k(y)[p + q]). (7.4)

Let mg be maximal with y € supp(H™). Then Ey~ ™ # 0 and E2? = 0 for
q < —my. Hence,

0# Ey ™™ = E%™0 = E~™0 = Hom(F*, k(y)[—ma)).

Hence, y = = and —d < my < 0, where d := dim(X). In other words, all
cohomology sheaves of F* are concentrated in x € X and in degree —d < i < 0.

On the other hand, Hom(H ™9, k(z)[p]) = 0 for p € [0, dim(X)] and, therefore,
EP? =0 for p ¢ [0,dim(X)] in the spectral sequence (7.4) with y = .
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q

0 0 0
0 Ey~™ - E$™ 0
0 * * 0
0 Eg ™ e Edmmo 0
0 0 o\> 0 0

p

Let now m; be minimal with H™* = (0. By what has been shown, we know
my1 < mg < 0. Since the sheaf H™ is concentrated in x, one finds, by applying
Serre duality, that Hom(H™, k(z)[d]) ~ Hom(k(z), H™)* # 0.

A quick look at the spectral sequence above reveals that a non-trivial element
in ES™™ = Hom(H™, k(z)[d]) survives and yields a non-trivial element in
E4=m1 = Hom(F*, k(z)[d — m4]). By assumption the latter group is zero if
d —my > d, which thus only leaves the possibility m; = my = 0. This proves
that F* is isomorphic to a sheaf concentrated in z. O

Thus, we have proved the first of our two additional assumptions in Step 3,
namely that G(F(k(z))) is a sheaf for any € X. Indeed, F* := G(F(k(x)))
satisfies the assumption of the lemma, because

Hom(F*, k(y)[i]) ~ Hom(G(F (k(x))), k(y)[i])
~ Hom(F(k(z)), F(k(y))[i]) = 0

for i ¢ [0,dim(X)] or & # y by assumption.

Step 5. Verification of the additional hypothesis ii) for generic « The
composition GoF' is a Fourier—Mukai transform. We denote its kernel by Q. As we
have just seen, i Q = G(F(k(x))) is a sheaf (concentrated in ), for any point x €
X. Here, i is the derived pull-back of the inclusion i, : {z} x X = X x X.
Now Lemma 3.31 applies and shows that Q is a sheaf on X x X flat over the
first factor.

Note that applying this lemma we use for the first time that the functor F is
in fact a Fourier—-Mukai transform.
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Let us now prove that Hom(k(z), k(z)[1]) —Hom(F(k(z)), F(k(z))[1]) is
injective for generic x € X. The composition with the functor G yields the
map

#(x) : Hom(k(z), k(2)[1]) —Hom(G (F(k(2))), G(F(k(x)))[1])

and we will rather show the injectivity of this map. This is clearly sufficient to
ensure assertion ii) in step 3.

Using the flatness of Q and the explanations in vii), Example 5.4, we know
that k(x) is the Kodaira—Spencer map of the flat family Q over X x X defining
GoF.

On the other hand, the map f : x+—= Q, is injective, since for any = the sheaf
Q, = G(F(k(z))) is concentrated in z (see the arguments at the beginning of
step 3). Hence, the tangent map x(z) := df(z) is injective for x € X generic.
(Note that here we definitely use the assumption that the characteristic is zero!®)

Step 6. End of proof. Why generic is enough We may apply step 3 to a
generic ¢ € X. Thus, Q, ~ k(x) for generic z € X. On the other hand, Q is flat
over X and hence the Hilbert polynomial of Q, is independent of x € X (cf. [45,
II1.9]). As we know in addition that Q, is concentrated in z for any x € X, we
find Q, ~ k(z) for all z € X. O

Remark 7.3 At first sight, the proposition looks like a translation of the gene-
ral method to test full faithfulness to the case of the spanning class given by closed
points. However, it is much stronger than this, as it asserts that the difficult
cohomology groups Ext’(k(z), k(z)) with 0 < i < dim(X) need not be tested.
To give an idea what they look like, one can show that Ext’(k(x), k(x)) ~ \' T,
with T, ~ Ext'(k(z), k(z)) the Zariski tangent space at 2 € X (cf. Section 11.1)

Here is one immediate consequence:

Corollary 7.4 Consider two fully faithful Fourier—Mukai transforms ®p :
DP(X) —=D(Y) and ®p/ : D’(X') —=DP(Y"). Then the product

q)pg'p/ IDb(X X X’) — Db(Y X Y/)

is again fully faithful.

Proof First note that ®Ppgp: (k(z) K k(z')) =~ &p(k(z)) X ®p/(k(z')) for any
closed point (z,2’) € X x X’ (see Exercise 5.13).
To conclude, apply the Kiinneth formula

Hom(F* R F'*,G*RG'"") = @ Hom(F*,G*[i]) ® Hom(F'*,G'*[j]).
i+5=0
O

3 To make this rigorous one has to use a little deformation theory. Bridgeland avoids this by
arguing with the Hilbert scheme, but I wanted to stick to this geometrically intuitive argument.
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Let us mention one special case of the above proposition, where the kernel P
is an actual sheaf. In this case we denote by P, the restriction of P to {z} xY C
X x Y, which is naturally isomorphic to Y.

Corollary 7.5 Let P be a coherent sheaf on X XY flat over X. Then ®p is
fully faithful if and only if the following two conditions are satisfied:

i) For any point x € X one has Hom(P,,Py) ~ k.
ii) If ¢ # y, then Ext'(P,,P,) =0 for all i.

Proof This is an immediate consequence of the proposition, for the flatness of
P over X ensures that ®(k(z)) = Ps. O

We will come back to this special situation on various occasions. Most often, we
will consider the case of a vector bundle P, e.g. the Poincaré bundle in Chapter 9.
Clearly, conditions i) and ii) say that all induced bundles P, are simple and
pairwise orthogonal in the sense that Ext’(P,,P,) = for all i whenever z # y.

7.2 Equivalences

Suppose ®p : DP(X) —=DP(Y) is a Fourier—Mukai transform between smooth
projective varieties of the same dimension. If ®p is an equivalence, then ®p, ~
®p, and hence PV ® ¢*wx ~ PY ® p*wy (cf. the arguments in the proof of
Corollary 5.21). Dualizing once more yields P ® ¢*wx ~ P ® p*wy. One might
wonder whether this condition in itself is sufficient to ensure that a given ®p is
an equivalence. Unfortunately, this is not true, as an example of any sheaf on
the product on two non-isomorphic elliptic curves reveals. However, it holds true
whenever the Fourier-Mukai transform is already known to be fully faithful, but
this is a rather weak result:

Proposition 7.6 Suppose ®p : DP(X) —=DP(Y) is a fully faithful Fourier—
Mukai transform between smooth projective varieties. Then ®p is an equivalence
if and only if

dim(X) =dim(Y) and P®q'wx ~P Qp wy.

Proof Any equivalence ®p satisfies these two conditions due to Proposition 4.1
(or Corollary 5.21) and Remark 5.22.

For the converse we want to apply Proposition 1.54. So, we need to ensure
that under the assumptions the adjoint functors G 4 F := ®p 4 H, which exist
due to Proposition 5.9, satisfy the condition:

o If H(F*) ~0 for F* € D(Y), then G(F*) ~ 0.
But this is obvious, as dualizing our hypothesis yields G = ®p, ~ ®p, =H.
O

Remark 7.7 We shall give an alternative proof of an assertion encountered
earlier in the proof of Proposition 6.1 saying that ®p_: DP(X)—=DP(Y) is
an equivalence if ®p : D?(X)—=DP(Y) is one (both functors go in the same
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direction). One first shows that ®p, is fully faithful by applying Proposition 7.1.
Indeed,

Hom(®p, (k(x)), ®, (k(y))[i]) ~ Hom(iP", i5PV[i])
~ Hom((#;P)", (i, P)" i])
=~ Hom(i, P, i; P[i])
(@

~ Hom

P(k(y)), @p(k(x))[i]).

For the second isomorphism use that dualizing and pull-back commute (cf. (3.17),
p- 85). In order to see that ®p, : DP(X) —=DP(Y) is in fact an equivalence, apply
the proposition. Indeed, as ®p is an equivalence, we have P, Qq¢*wx ~ PrLRp*wy.

Corollary 7.8 Suppose X and Y are smooth projective varieties of the same
dimension and with trivial canonical bundle wx , respectively wy . Then any fully
faithful exact functor DP(X) —=DP(Y) is an equivalence. O

Exercise 7.9 Find a proof of this corollary that only uses the existence of a
left (or right) adjoint and not Orlov’s existence result. (Hint: Use Remark 1.31.)

Here is another application of the same techniques.
Proposition 7.10 Consider a fully faithful Fourier—Mukai transform
dp : DP(X) —DP(Y)
and suppose that its right adjoint H = ®p,, satisfies
H(F*Quwy)~ H(F*) Quwx.
Then, ®p s an equivalence.

Proof We shall again apply Proposition 1.54. Let G 4 F' := ®p 4 H. Suppose
H(F*) = 0. Then for any F* € DP(Y)
Hom(G(F*),£E®) ~ Hom(F*, F(E*))
~ Hom(F(€®), 7* @ wy [dim(Y)])"
~ Hom(£*, H(F* © wy)[dim(Y)])" =0,
where we use that H(F* Qwy) ~ H(F*) @ wx ~ 0.

Thus, Hom(G(F*),£®) = 0 for any £* € DP(X) and hence also G(F*) ~ 0.
Note that only ‘H(F*®) ~ 0 implies H(F*® ® wy ) = 0’ has been used. O

A similar argument shows that another sufficient assumption would be that
H commutes with Serre functors. Of course, once we assume that both varieties
have the same dimension, these two assumptions are equivalent.

It is not difficult to modify the above proof in order to get the original
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Proposition 7.11 (Bridgeland) Suppose ®p : DP(X)—=D"(Y) is fully
faithful. Then ®p is an equivalence if and only if

(I)p(k?(l')) R wy =~ (I)p(k‘(x))
for all closed points x € X. See [18].
Proof Note that the assertion follows directly from Corollary 1.56 if we assume
in addition that dim(X) = dim(Y"). In this case ®p(k(z)) @wy ~ ®p(k(x)) says
that ®p commutes with Serre functors on the spanning class {k(x)}.

If we don’t know yet that dim(X) = dim(Y"), then we argue as above. Assume

H(F*®) ~ 0, where as before G 4 F' 4 H with F := ®&p. Then
Hom(G(F*), k(z)[i]) ~ Hom(F*, F(k(x))[i])
~ Hom(F*, F(k(z)) ® wy[i]) (by assumption)
F(k(x)), F*ldim(Y) —i])* (Serre duality)
~ Hom(k(x), H(F*)[dim(Y) —i])* =

Since by Proposition 3.17 the objects of the form k(z) span DP(X), this suffices
to conclude that G(F*) ~ 0.

The other direction, namely that F'(k(z)) ~ F(k(x)) ® wy for any equivalence
F, is easier. Either, one applies Pgr ~ PL or one argues as follows. Since F' is
an equivalence, it commutes with Serre functors and, furthermore, dim(X) =
dim(Y"). Hence

F(k(z)) ~ F(k(r) ® wx) = F(Sx (k(z))[- dim(X)])
~ Sy (F(k(y))) [ dim(Y)] =~ F(k(z)) @ wy.
(See the proof of Proposition 4.1 for similar arguments.) |

We again mention explicitly the special case when the kernel is a sheaf.

Corollary 7.12 Let P be a sheaf on X XY flat over X. Assume that ®p is
fully faithful. Then ®p is an equivalence if and only if P, ~ P, @ wy for all
zeX. m|

This corollary is often combined with Corollary 7.5, see Chapter 9. The proof
of the following version of Proposition 7.11 is left to the reader. It uses the
spanning class given by an ample line bundle.

Proposition 7.13 Let F : D*(X)—=DP(Y) be a fully faithful exact functor
with X andY smooth projective varieties. Suppose that F(L'®@wx) ~ F(LY)@wy
for all powers L*, i € Z, of an ample line bundle L on X.

Then F is an equivalence. O

Exercise 7.14 Prove the analogue of Corollary 7.4 for equivalences, i.e. show
that ®prp: is an equivalence for any two equivalences ®p and Pp/.
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7.3 Canonical quotients

This section is a digression and you might as well skip it at first reading. It
will be used later when working through the Enriques classification of algebraic
surfaces from the derived category point of view (see Section 12.3). It is included
here as an illustration of some of the techniques encountered so far.

There is a standard construction that trivializes a line bundle of finite order
by passing to an étale cover X — X. Let us recall some of the details. Consider
an arbitrary line bundle L on X and let

e |L| — X
be the associated affine bundle over X. The pull-back 7*L admits a canonical
section t € HY(|L|,7*L) which in a closed point ¢ € L(x) over a closed point
x =m(¢) € X takes the value £ € (7*L)(¢) = L(x). In fact, t trivializes 7* L away
from the zero section.

Suppose now that L™ ~ Ox for some finite n > 0 and choose a trivializing sec-
tion s € H(X, L™). The equation t" —7*s € H°(|L|,7* L") defines a subscheme
X c |L|. A local calculation shows that the induced projection 7 : X—Xis
étale. Moreover, m,0g ~ @, _ éL k (see [5, 1.17]). If the order of L is exactly
n, then X is connected. Moreover, the cyclic group G := Z/nZ acts freely by
covering maps such that X /G =X.

Suppose X is a smooth projective variety with a canonical bundle wx of finite
order n. The above construction applied to L = w% yields the canonical cover
7 : X — X. Note that the canonical cover behaves well with respect to products,
ie. if mx : X —= X and Ty @ Y —=Y are the canonical covers of X , respectively
Y, then their product Tx X Ty : X xY —= X xY is the canonical cover of X x Y.
Similarly, X x Y —=X x Y is the canonical cover of X x Y etc.

If DP(X) ~ DP(Y)) then by Proposition 4.1 with wx of order n, wy is also of
order n. So one might ask whether the derived equivalence of X and Y implies
derived equivalence of their canonical covers X respectively Y. This turns out
to be true and will be proved here. The result of Bridgeland and Maciocia is
more precise than this. In order to phrase it, we need the following

Definition 7.15 Suppose X andY are smooth projective varieties with canon-
ical bundles of order n. Let tx : X — X and wy : Y —Y denote the canonical
covers. We say that an equivalence ® : DP(X) ~ DP(Y) lifts to an equivalence
® : DP(X) ~ DP(Y) if the two diagrams

~ B ~ ~ o ~
DP(X) —— D"(Y) DP(X) — D"(Y)
TX % () TY % Tx (%) Ty
DY(X) —— DA(Y) D(X) —— DO(¥)

commute.
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Eventually, one is interested in Z/nZ-equivariant lifts ®. This means that there
exists an automorphism p : Z/nZ "> 7/nZ such that

Pog"~pu(g) o®
for any g € Z/nZ. Of course, it suffices to check this condition for a generator of
Z/nZ, which in the sequel will be denoted g € Z/nZ.

In order to construct a lift ® for a given ®, one needs the following standard
(at least for sheaves) fact.

Lemma 7.16 Suppose mw : X —>X s the canonical cover of X and P €
Db(X).NThen P ~ P @wx if and only if there exists an object P € DP(X)
with m,P ~ P. See [23]. O

We shall apply this to the product situation:
Corollary 7.17 Suppose P € D*(X xY) satisfies PRq*wx ~ PRp*wy. Then
there exists an object P € DP(X x Y) with
(idx x 7y )P =~ (mx x ids).P € DP(X x Y). (7.5)
Proof In order to apply Lemma 7.16, it suffices to check (idx X my)*P ~
(ldx x 1y )*P @ wy, 3. As Tywy ~ wy ~ O, this follows from
(idx X Wy)*’P ®wXX)~/ ~ (ldX X Wy)*('P ®wx><y)
~ (ldX X Try>*('P ® (p*w}%)) ~ (ldX X ﬂ'y)*'P.
O

Proposition 7.18 (Bridgeland, Maciocia) Suppose X and Y are smooth
projective varieties with canonical bundles of finite order. Then any equivalence
® : DP(X) ~ DP(Y) admits an equivariant lift ® : DP(X) ~ DP(Y). See [23].

Proof Equivalences are always of Fourier—Mukai type (see Proposition 5.14).
So, we can work with the corresponding kernels. Suppose ® = &p. As ® is an
equivalence, its kernel satisfies P®q*wx ~ P®p*wy. Hence, the corollary applies
and yields an object P satisfying (7.5). The induced Fourier—-Mukai transform
will be denoted @ := ®.

Let us first check the commutativity of (x) in Definition 7.15.

Exercise 5.12 and (7.5) yield an isomorphism between

DP(X) — = DY(Y) — s DT

and

ie.my 0 ® ~ dormk.



164 Equivalence criteria for Fourier—Mukai transforms

Before proving that also (*) commutes, let us prove that disan equivalence. As
X and Y both have trivial canonical bundle, it suffices to prove full faithfulness.
For this purpose choose an ample line bundle L on X which naturally induces
ample sequences L' in Coh(X) and 7% L’ in Coh(X). Indeed, since 7y is finite,
m% L is again ample.

Invoke Proposition 1.49 and Corollary 3.19 to see that full faithfulness follows
from the bijectivity of the natural maps

Qs L Lt Home(g)(ﬂ’;{Li,ﬂ'}Lj) —_— Home(g)(@(ﬂ'}QLi),<I>(7r’)k(Lj)).

By adjunction and projection formula (3.11)
Home(g)(w}‘}Li,ﬂ'}Lj) ~ Hompp(x) (L', L7 @ mx.O0%)

n—1

~@Home (L', L7 @ wk)

and, similarly,

Home(?)@(wj(Li), O(ry L)) ~ Home(y)(Wf/CI)(Li)7w?@(Lj))
~ @ Homp (v ((L7), &(L7) @ wh).

For the latter we use ® o m% ~ my o ®, which also ensures that 577;(,;1-777}];]'
respects the direct sum decomposition, i.e. it is the direct sum of the natural
bijections

Dpi pigwk * Hompe(x) (L', L7 ® wh) — Hompn(y)(®(LY), ®(L7) @ wy).

Note that ®(LJ ® wk) ~ ®(L/) ® wk, for ® is an equivalence and as such
commutes with Serre functors.

Once 75, 0 ® ~ do % and the fact that ® is an equivalence are established,
the commutativity of (x) can be proved as follows: take right adjoints to obtain
Dp, 0Ty, ™ Tx4 0 <I>5R7 and then compose with ® from the left and with d from
the right. N

It remains to prove that ® is equivariant. As before, we pick a generator
g € Z/nZ. Then consider the autoequivalence

U:=®og*od1:DP(Y) — DP(Y).

Clearly, U lifts the identity on DP(Y). Thus, it suffices that any lift of the iden-

tity is of the form h* : DP(Y)—=DP(Y) for some h € Z/nZ; the isomorphism
W Z/nZ ">7/nZ is then defined by g+ h.
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Since U lifts the identity, there exists for any closed point y € Y a closed
point ' € Y such that 7y, U(k(y)) ~ k(y'). Hence, ¥(k(y)) is also isomorphic to
k(f(y)) for some closed point f(y) € Y. Thus Corollary 5.23 applies and shows
that f describes an automorphism of ¥ and ¥ ~ (M @ ( )) o f. for some line
bundle M on Y. Clearly, f covers the identity on Y and is thus induced by some
h € Z/nZ. Evaluating ¥ on Oy = 73Oy yields M ~ O. a
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SPHERICAL AND EXCEPTIONAL OBJECTS

It is clearly a difficult task to construct interesting autoequivalences of a given
derived category or to uncover the complete structure of the derived category
itself. Only very few general principles are known and this chapter is devoted to
the presentation of those that are related to the existence of special objects in
the derived category.

In the first section we shall introduce spherical objects, a notion that has
been motivated by considerations in the context of mirror symmetry. Spherical
objects naturally induce autoequivalences and their action on cohomology can
be described precisely. In particular, we will be in the position to construct
interesting non-trivial autoequivalences that act trivially on cohomology.

Considering more than one spherical object yields more autoequivalences. For
certain configurations of spherical objects this construction gives rise to an action
of the braid group. These results, due to Seidel and Thomas, are the topic of
Section 8.2.

The results of Section 8.3 are almost classical. We give an account of the
Beilinson spectral sequence and how it is used to deduce a complete descrip-
tion of the derived category of the projective space and, more generally, of the
derived category of a projective bundle. This will use the language of exceptional
sequences and semi-orthogonal decompositions encountered in Section 1.4.

The final section gives a simplified account of work of Horja which extends the
theory of spherical objects and their associated twists to a broader geometric
context.

8.1 Autoequivalences induced by spherical objects

In this section X denotes a smooth projective variety over a field k. As we will
not use Proposition 7.1 the field does not necessarily need to be algebraically
closed or of characteristic zero.

Definition 8.1 An object £* € DP(X) is called spherical if
) E* Quwx ~E° and

k if 1 =0,dim(X)
0 otherwise.

ii) Hom(&*,E%[i]) = {
Condition ii) can equivalently be expressed as
Hom(£°*,E£°[+]) ~ H*(SUm(X) k),

where S4m(X) is the real sphere of dimension dim(X). This explains the name.
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In the following we shall denote spherical objects (and in fact any complex)
simply by €. Whether they are sheaves, as they indeed are in most of the
examples, is of no importance.

Note that choosing an isomorphism in i) and applying Serre duality yields a
canonical isomorphism Hom(€, &) ~ Hom(&, £[dim(X)])*.

Exercise 8.2 Let £ be a spherical object. Show that £V, £[i] for any ¢ € Z,
and £ ® L for any L € Pic(X) are again spherical objects.

Using the cone construction (cf. Definition 2.15), one associates to any object
£ € DP(X) the following object P := Pg in the derived category D*(X x X) of
the product:

Pe = C (q*gv ® prE — (’)A> . (8.1)

Here, Oa is the structure sheaf of the diagonal A C X x X viewed as a sheaf
on X x X. So, more accurately Oan = 1.Ox with ¢ the diagonal embedding
t: XA C X x X. The homomorphism in (8.1) is given as the composition
of the restriction

&Y @p & —— L (¢ €Y @p*E)) = 1(EV ®E),
and of the direct image ¢.tr of the trace map (see p. 77)
tr: &V o€& — Ox.

In other words and more accurately, Pg is an object that completes the natural
morphism ¢*£Y ® p*E& —= O to a distinguished triangle

&Y @p* & —= Op — Pe — ¢ &Y @p*&1].

(The cone cannot be defined in general, as the trace is not a true morphism of
complexes, but only defined as a morphism in the derived category.)

In fact, the cone construction is not functorial due to the non-uniqueness in
the axiom TR3 (see Definition 1.32). The object Pg exists, but it is defined only
up to non-unique isomorphism.

Definition 8.3 The spherical twist associated to a spherical object £ € DP(X)
is by definition the Fourier—Mukai transform

Te := ®p, : DP(X) — DP(X)
with kernel Pg.

Exercise 8.4 Let £ be a spherical object. Show that there exists a natural
isomorphism Tg¢ ~ Tgpy) (see Exercise 8.2).
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Exercise 8.5 Let £ be a spherical object.
i) Show that for any object F € DP(X) there exists an isomorphism

Te(F)~C (Hom(g,f[*]) ®E — ]—") .
More precisely,
Te(F)~C (@i (Hom(&, Flil) ® £]~i]) — f)

with the first morphism given by evaluation. (Use that trace and evaluation
yield the same homomorphism VV @ V —k.)

(Again, we are sloppy here. The cone does not make sense. What is meant,
of course, is that the image under the spherical twist completes the evaluation
morphism (in the derived category) to a distinguished triangle.)

ii) Use i) to prove

Te(€) ~ €1 —dim(X)] and Tg(F)~F (8.2)
for any F € DP(X) with Hom(&, F[i]) =0 for all i € Z (i.e. F € £1).

The following result was suggested by Kontsevich. A complete proof was given
by Seidel and Thomas in [106].

Proposition 8.6 Let £ be a spherical object in the derived category DP(X) of
a smooth projective variety X. Then the induced spherical twist

Te : DP(X) — DP(X)
is an autoequivalence.

Proof As often, the difficult part of the proof is to show that the functor is
fully faithful. Indeed, once this has been established, one easily deduces that Tg
is an equivalence from £ @ w ~ &,

Pe®@qwx =C (q*(5v Quwx)®p€ —= Oa ®q*wx)

~C (q*fv @p & — Oa ®p*wx)
~ Pe R piwx,

and Proposition 7.6.

(One could also argue that Tg commutes with Serre functors on objects F = &
and F € £+, which follows directly from (8.2). Corollary 1.56 then yields the
assertion as soon as one knows that these objects span DP(X), which will be
shown next.)
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In order to show that Tg is fully faithful, we apply Proposition 1.49. The
spanning class () we wish to consider in the present situation consists of £ and
all F € DP(X) such that Hom(&, F[i]) = 0 for all i € Z. In other words,  :=
{Eyu et

Let us first verify that  is indeed spanning. Suppose F € DP(X) is an
object such that Hom(G,F[i]) = 0 for all G € Q and all i € Z. In partic-
ular, Hom(&, F[i]) = 0 for all i € Z and, therefore, # € &% C Q. Thus,
id € Hom(F, F) = 0, which yields F ~ 0.

If 7 € DP(X) is such that Hom(F,G[i]) = 0 for all G € Q and all i € Z, then
Serre duality shows Hom(G, F @ wx|[i]) = 0 for all G € Q and all i € Z. As was
shown before, this implies F ® wx =~ 0 and hence F ~ 0.

In order to verify that

Te : Hom(Gy, Gali]) — Hom(Te(G1), Te(G2))[i]) (8.3)

is an isomorphism for all ¢ € Z and all G1, Gy € ) we shall use the description of
the image Tg(G) for G € Q given in Exercise 8.5.

Thus (8.3) is an isomorphism for G; = &€ and G, € &L or vice versa, because
in these cases both sides are simply trivial. (Serre duality and the assumption
£ ®@wx =~ & come in here.)

Next one considers the case G; ~ Go ~ £. The image of id € Hom(&, &) is
again the identity id = Tg(id) : £[1 — dim(X)] —&[1 — dim(X)]. It is similarly
straightforward to check that (8.3) is the identity for i = dim(X).

Eventually, one deals with the case G;,Gy € £*. Here, one finds that (8.3)
composed with the isomorphisms Te(G;) ~ G; obtained in Exercise 8.5 yields a
bijection Hom(G1, G2) = Hom(G1, G2). Hence (8.3) is bijective as well. ad

Exercise 8.7 In view of the distinguished triangle
T(F)[-1] — @ Hom(¢, Fli]) ® E[~i] — F —— T(F)

one might wonder whether the two triangulated subcategories (£) and £+, which
span DP(X) (see the proof), actually define a semi-orthogonal decomposition of
DP(X) (see Definition 1.59). Why don’t they?

Spherical objects are almost exclusively studied on Calabi—Yau manifolds, i.e.
varieties with trivial canonical bundle wx ~ Ox. In this case, the condition i) in
Definition 8.1 is automatically satisfied. For Calabi—Yau manifolds the preceding
exercise can be generalized to the following one.

Exercise 8.8 Show that the derived category DP(X) of a Calabi—Yau manifold
X does not admit any non-trivial semi-orthogonal decomposition.

Remark 8.9 The original proof of Seidel and Thomas is phrased purely in
terms of homological algebra, i.e. not using the description of the spherical twist
as a Fourier-Mukai transform. The above short proof is taken from [95].
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Examples 8.10 i) Consider a smooth projective curve C' and a closed point
x € C. Then k(x) is a spherical object. The spherical twist T}, turns out to
be isomorphic to the functor given by Fr—F @ O(z), where O(x) is the line
bundle associated to z € C.

One way to see this is to show that there exists a functorial isomorphism
Th(zy ~ O(xz) ® () on the subcategory spanned by all line bundles and then to
apply Proposition 4.23 or 4.24.

Now, for a line bundle L one has Hom(k(z),L) = 0 and Ext!'(k(z),L) =
Hom(k(x), L[1]) is spanned by the unique extension provided by

0 — L — L(z) — k(z) — 0.

Hence, there exists a functorial isomorphism
Th(zy(L) ~ C (Ext' (k(z), L)[~1] ® k(z) — L),

ie. Ty (L) ~ L(x). ‘

ii) If X is a true Calabi—Yau manifold, i.e. wxy ~ Ox and H*(X,Ox) = 0 for
0 < i < dim(X), then any line bundle L on X is a spherical object. For L = Ox
the associated Fourier—Mukai kernel is the shifted ideal sheaf Za of the diagonal.

iii) Let X be a smooth projective surface and C' C X a smooth irreducible
rational curve with C? = —2. Then O¢ is a spherical object. More generally,
any Oc(k) is a spherical object. Here, O¢ (k) is the pull-back of Op: (k) under
an isomorphism C ~ P'. Any smooth irreducible rational curve in a K3 surface
satisfies the hypothesis C? = —2.

iv) Let now C be a smooth rational curve contained in a true Calabi-Yau
variety X of dimension three. Assume that the normal bundle of C' is isomorphic
to Neyx ~ O(=1) @ O(—1). Then O¢ is a spherical object. Indeed, by Serre
duality

Hom(O¢, O¢[3]) ~ Hom(O¢, Oc)* ~ k
and
Hom(O¢, O¢2]) ~ Hom(O¢, Oc1])* ~ EXtﬁ((Oc, Oc)*.

The latter group is trivial, as it measures infinitesimal deformations of O¢ and
there are none under the assumption H°(C,N¢,x) = 0. (The relation between
the Ext-groups and the normal bundle will be discussed in broader generality in
Section 11.2.)

v) The previous example can be generalized to cover a situation that will
interest us in Chapter 11. Consider a smooth subvariety P C X in a true Calabi—
Yau variety X of dimension 2n + 1. Suppose

P~P" and Np/x ~O(—1)%"

By using the isomorphism Ext% (Op, Op) ~ \? Np,x proved in Proposition 11.8
the spectral sequence (3.16)

B = HP (X, Ext% (Op, Op)) = Bxt}(Op, Op)
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becomes
P.a _ 7D 1 p+q
E2 =H (P,/\ ./\/'p/X):>EXtX (OP7OP).

The standard Bott formulae yield EY? = 0 except for (p,q) = (0,0) or (n,n+1).
Moreover, ES* = E" ! = k. This shows

Ext% (Op,Op) ~ H*(S*" 1 k)

and, hence, since X has trivial canonical bundle, Op € D"(X) is spherical.

vi) Abelian varieties (see Chapter 9), true Calabi—Yau varieties (see iii) above)
and algebraic symplectic varieties form the building blocks for all varieties with
trivial canonical bundle. By definition an algebraic symplectic variety is a variety
that possesses a global section of Q% which is non-degenerate at every point. The
Pfaffian of such a section trivializes the canonical bundle wx. In particular Hodge
theory tells us that H2(X, Ox) = H(X, Q%) is non-trivial. Of course, this also
holds true for abelian varieties of dimension at least two.

In characteristic zero, a variety of dimension at least three with non-trivial
H?(X,0x) admits no spherical objects of non-trivial rank. This is shown by
means of the trace map which induces a surjection Ext*(&,&) — H?(X,Ox),
whenever rk(€) # 0. (The rank of a complex is of course defined as the alternating
sum of the ranks of all the participating sheaves.)

One can in fact show that abelian varieties of dimension at least two do not
admit any spherical objects. Most likely, the same holds true for algebraic sym-
plectic manifolds from dimension four on. Thus, in higher dimensions the theory
of spherical twists is only of interest for genuine Calabi—Yau manifolds.

Remark 8.11 The kernel of the inverse T~! of a spherical twist T := T is
not so easily described. However, as in Exercise 8.5, i) its effect on objects can
be described in terms of distinguished triangles.

More precisely, for any object G € D(X) there exists a distinguished triangle
of the form

T7-1g ——= G —— &[d] ® Hom(&,G[*]) —— T1G[1]. (8.4)

Indeed, applying the exact functor 7! to the original distinguished triangle in
i), Exercise 8.5 yields

T-1g —= G —— T 1&[1] ® Hom(&,G[+]) —— T1G[1].

Using T 1€ ~ £[d — 1] (see Exercise 8.5, ii)) we obtain (8.4).

When studying any kind of Fourier—-Mukai transform the natural reflex is to
first exhibit its action on cohomology. This will be done now for spherical twists.
More precisely, for any spherical object £ € DP(X) and its associated spherical
twist Tg : DP(X) —=DP(X) we shall describe

TH . H*(X,Q) —— H*(X,Q).
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To &, as to any other object in DP(X), one associates its Mukai vector
v(€) :=ch(€)vtd(X) € H* (X, Q).

If { , ) denotes the Mukai pairing on H*(X, Q) introduced in Section 5.2, then

(0(€),0(E)) = x(&,€) = > _(—1)" dim Hom(E, £[3]).

Thus, for a spherical object £ we have

2 if dim(X) =0 (2
(v(€),v()) = { 0 if dimEX) =1 E2g

In fact, the second equality holds true for any object £, as the Mukai pairing on
an odd dimensional variety is alternating (see Exercise 5.43).

Lemma 8.12 Let £ € DP(X) be a spherical object. Then the induced spherical
twist Te acts on H*(X,Q) by

TH . v i—s v — (0(&),v) v(E).
Proof By definition T is the Fourier—Mukai transform with kernel
Pe =C(¢*EY @ p*& —=04)

whose Mukai vector is of the form v(Oa)—q*v(EY).p*v(E) = [A]—g*v(EY)p*v(E)
(see Exercise 5.34). Hence,

Te(w) = v — (/X v.v(é’v)> ()

=v— (/X exp(cl(X)/Q).v.v(E)v) -v(€)
=v = (v(&),v) - v(&),

where we use Lemma 5.41 and the fact that v(£)Y is an even cohomology class
so that [, v(€)Y.w = [, v.w(E)Y for all v. O

In particular,
—v(€) if dim(X) =
T¢ (v(€) = { v(€) if dim(X) =

which can also be seen as a consequence of Tg(£) ~ &[1 — dim(X)] (cf.
Exercise 8.5, ii)).

Corollary 8.13 If £ is a spherical object on an even dimensional variety X,
then the spherical twist Te acts on H*(X,Q) by reflection in the hyperplane
orthogonal to v(E). O
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Remark 8.14 In particular, in the even dimensional case (T{7)? = idg-. On
the other hand, T2 sends € to £[2 — 2dim(X)] and any F € (£)* to F again.
Hence, T? is neither the identity nor a pure shift functor.

In other words, on an even dimensional variety any spherical object £ gives
rise to an element

T2 € Ker(Aut(DP(X)) — Aut(H*(X,Q)))

no non-trivial power of which is contained in the subgroup generated by the
double shift Fr— F[2].

Exercise 8.15 Suppose £ is a spherical object on a variety X of odd dimension.
Show that (TZ)*(v) = v — k- (v,0(E)) - v(€) for any k € Z. Thus, if v(€) #
0 then T (and hence Tg) is of infinite order. For a geometric instance see
Examples 8.10, iv).

Besides abelian varieties, to be treated in Chapter 9, there are essentially two
other types of smooth projective varieties with trivial canonical bundle. Those
with trivial HY(X, Q%) for 0 < i < dim(X), which were called true Calabi-
Yau varieties above, and those with an everywhere non-degenerate two-form
o spanning H°(X,0?). The latter are called (irreducible) algebraic symplectic
varieties, for o can be viewed as the algebraic analogue of a symplectic form. On
a true Calabi—Yau variety, any line bundle provides an example of a spherical
object, whereas on algebraic symplectic varieties of dimension at least four we
do not expect any spherical object to exist at all.

In this sense, algebraic symplectic varieties are not covered by the previous
discussion (see however the discussion of EZ-spherical objects in Section 8.4 and
in particular Examples 8.49, iv)). There is however another type of object on
algebraic symplectic varieties that give rise to autoequivalences; these are the
so-called P-objects and their associated P-twists.

There is a striking analogy between the theory of spherical twists and of
P-twists and an amusing interplay between them, when the symplectic variety
can be put in a certain family. This has been explained in [56]. Here, we shall
just outline the construction of a P-twist and state that it is an equivalence. The
techniques are similar, but slightly more involved than in the spherical case.

In the following discussion we will not explicitly require X to be an algebraic
symplectic variety, but this is the type of variety we have in mind.

Definition 8.16 An object £* € DP(X) in the derived category of a smooth
projective variety X is a P"-object if

) E*Quwx ~E° and
ii) Hom(&E®,E°[+]) ~ H*(P™, k).
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The isomorphism in ii) is supposed to be an isomorphism of graded algebras,
where the multiplication in Hom(&E®, £¢[*]) is given by composition. Note that
Serre duality implies dim(X) = 2n.

Examples 8.17 i) Suppose X is an algebraic symplectic variety of dimension
2n and P := P"™ C X. One can show that NP/X ~ Qp and hence E2t1(Op, Op) ~
Q% (cf. Proposition 11.8). Thus the spectral sequence

B = HP(X,Ext"(Op, Op)) = Ext}(Op, Op)

yields a ring isomorphism Exty (Op,Op) ~ H*(P,Q%) = H*(P",C). Hence,
Op € DP(X) is a P"-object.

ii) If X is an algebraic symplectic variety, then H*(X,0Ox) ~ H*(P", C).
Hence, any line bundle L on X is a P"-object. Indeed, Ext*(L, L) ~ H*(X, Ox).

Let £ € D’(X) be a P"-object and h € Hom(&, £[2]) a generator thought of
as a morphism h : £[—2] —=&. The image of h under the natural isomorphism
Hom(€, £]2]) ~ Hom(EY, £V[2]) will be denoted h", which represents a morphism
Y EV]-2]—&V.

Then introduce H := hY Xid —id X h on X x X which is a morphism

H:(EYKE)[-2] —= EVRE.
The cone H := C(H) of this morphism fits in a distinguished triangle
(EVRE) -2 — > VRE —> H —> (EVRE)[-1]. (8.5)

Recall that the kernel of the spherical twist associated to a spherical object is
by definition the cone of the trace morphism tr: £¥ X & —=Ox.

As it turns out, the trace factorizes over a morphism t : H —=0Oa. Indeed,
applying Hom( ,Oa) to (8.5) yields a long exact sequence.

By definition of H, the boundary morphisms

HomXXX(EV X E,OA[Z]) E—— HOIHXX)((EV |Z|g, OA[Z + 2])
~ Homyx (&, &[i]) ~ Homy (&, E[i + 2])

are given by h — h = 0. Hence Hom(H,Oa)—=Hom(Y K £,04) is an
isomorphism, giving the unique lift t of the trace map.
To any P"-object £ € DP(X) one associates the cone

Qs = C(H ——> 0a) € DV(X).

Definition 8.18 Let £ € DP(X) be a P"-object. The associated P"-twist Pe is
the Fourier—Mukai transform

Pg =g, : DP(X) — DP(X)

with kernel Qg¢.
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Proposition 8.19 (Huybrechts, Thomas) For any P"-object £ € D’(X)
the associated P"-twist is an autoequivalence

Pg : DP(X) — DP(X).
See [56].

8.2 Braid group actions

Let us start with a few recollections on the braid group.
The braid group Bp+1 on (m + 1)-strands is the group that is generated by
elements 31, ..., 3, subject to the relations

Bi Bix1-Bi =Biv1-Bi-Piz1 foralli=1,...,m—1
Bi-B;=p;-0; if|i—j|>2.

The first relation is best pictured by the geometric realization:

- <

o< 9

Definition 8.20 An A,,-configuration of spherical objects in DP(X) consists
of spherical objects &1, ...,Em € DP(X) such that

. 1 dfli—jl=1
@dlmHom(&,Ej[k])={ 0 z; L-ﬂ >1
k .

The following technical lemma is the key to the understanding of the
simultaneous action of all the twist functors induced by an A,,-configuration.

Lemma 8.21 Let £ € D?(X) be a spherical object. Then for any autoequival-
ence ® : DP(X) "= DP(X) there exists an isomorphism

q)OTg 'L’Tq;.(g) o ®.

Proof To make the assertion plausible we will apply an ad hoc argument to
produce an isomorphism ®(T¢(G)) ~ Ty ) (®(G)) for any object G.
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Exercise 8.5 applied to 1" := T ¢y and the object ®(G) provides a distinguished
triangle
®(&) @ Hom(®(€), ®(9)[+]) —— ®(G) —— T(2(9)). (8.6)
As @ is an equivalence and hence Hom(®(€), ®(G)[+]|) ~ Hom(&, G[#]), (8.6) can
be written as a distinguished triangle
%)
®(&) ® Hom(&,G[*]) —— @(G) —— T(®(G)). (8.7)

On the other hand, Exercise 8.5 applied to Tg and the object G yields a
distinguished triangle

£ ® Hom(€,G[)) — > G Te (). (8.8)

which after applying ® provides a distinguished triangle

B(€) ® Hom(E, G]) —s B(G) —> B(T5(G))

with ¢ := ®(¢p). A moment’s thought reveals ¢ = 1. Hence, by TR3 there exists
a, not necessarily unique, isomorphism ®(7s(G)) ~ Toe)(®(G)).

The problem that remains is to show that these individual isomorphisms
constructed in this way for each given G indeed glue to an honest functor iso-
morphism ® o Tg ~ Tg(g) o @, the difficulty being caused by the non-uniqueness
of the completing morphism in TR3.

The existence of an isomorphism is equivalent to the commutativity of the
diagram

Db(X) .L Db(X)

Denote the Fourier—-Mukai kernel of ® by S € DP(X x X), i.e. ® ~ ®&5. Then
Exercise 5.13, ii) shows that it suffices to prove ®s.xs(Pe) =~ Pa(e). (Recall that
(PSR ~ Q_l.)

To this end, apply ®s,ms to the distinguished triangle

EVRE Ona Pe
which yields a distinguished triangle
D5 (EV)RP5(E) —— Pspms(0a) — Psyms(Pe) (8.9)
(cf. Exercise 5.13, 1)).
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Invoking the commutative diagram of Exercise 5.13, i)

shows (I)SRIZIS(OA) ~ OA.
Using Grothendieck—Verdier duality (see Theorem 3.34) one finds

D5, (EY) = pu(q’EY © 8Y @ ¢"wx [dim(X)))
~ Hom(p.(¢*E ® S), Ox)
~ p.Hom(q*€E @ S,w,[dim(p)]) ~ ®s(€)".

Hence, (8.9) becomes

Ds5(E)Y R Ds(E) Oa P sms(Pe).-

All identifications are sufficiently canonical to ensure that the first morphism
in this triangle is again just the trace map. Thus, the two objects P s, xs(Pg)
and Pg(g) completing it to a distinguished triangle are necessarily isomorphic.

O

In the following, the proposition shall be applied to the case that also @ is a
spherical twist.
Proposition 8.22 (Seidel, Thomas) Suppose &1,...,En € DP(X) is an
A, -configuration of spherical objects. Then, for the induced spherical twists
T, :=Tg, one finds
T;0T;~T;0T; forli—j]>1
EOTi+1OTi2Ti+IOEOTi+1 forizl,...mz—l.

Proof The first isomorphism follows directly from the previous lemma and the
assumption Hom(&;, &[*]) = 0 which implies T;(&;) =~ &, (see Exercise 8.5).
For the second assertion one first applies the lemma to conclude

TioTip10T; =T;0Ty,, (&) 0 Tit1

= TTi(T£+1(£i)) 0T oTiq.

Hence, it suffices to prove T;(T;41(&;)) =~ Ei+1[¢] for some £ (cf. Exercise 8.4).
If necessary, we shift &1 such that dimHom(&;41,&;) = 1. Thus, applying
Exercise 8.5 to T;+1 produces a distinguished triangle

i1 —> & —— Ti41(&) — &l
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and by applying the exact functor T; to it yet another one

$1
Ti(Eir1) — Ti(&) — Ti(Tisa (&) —— Ti(&a)[1]-
For the term in the middle we use the isomorphism T;(&;) ~ &[1 — d], where
d = dim(X) (cf. Exercise 8.5).
Similarly, T;(&;+1) is described by the distinguished triangle

Ei[—d] Eit Ti(Eiv1) — &1 —d]

or, equivalently,
Y2
Ti(gi+1) —_— 51[1 - d] —_— i+1[1] —_— Tl((€1+1)[1]

Since Hom(&;41,&;) ~ Hom(T;(&i41),Ti(E;)) is of dimension one, the two
morphisms ¢; and o coincide up to scaling. Hence, T;(T;4+1(&;)) =~ Eiyr1ll]
by TR3. 0

Remark 8.23 The proposition can be rephrased by saying that any A,,-
configuration of spherical objects in DP(X) induces a group homomorphism

Bpy1 —= Aut(DV(X)),

i.e. a ‘representation’ of the braid group on DP(X).

Theorem 8.24 (Seidel, Thomas) Suppose &1, ...,Ey, € DP(X) is an A,,-
configuration of spherical objects on a smooth projective variety X of dimension
at least two. Then the induced representation

Bry1 —— Aut(DP(X))

is injective. See [100].

The proof of this deep theorem is far beyond the scope of these notes. Roughly,
one tries to extract a ‘smaller’ representation of the braid group for which faith-
fulness can be shown more easily. In fact, it is shown that any non-trivial element
g of the braid group acts non-trivially on at least one of the spherical objects &;,
ie. g(&) # &;. Clearly, by the very nature of the braid group some fair amount
of topology has to come in at some point.

If X is even-dimensional and the Mukai vectors v(&;) are linearly independent,
then the braid group action

Byy1 — Aut(DP(X))
covers the Weyl group action

Wy, —— Aut(H* (X, Q))
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given by the reflections in the hyperplanes orthogonal to the v(&;). Hence,
in order to prove injectivity of B, —=Aut(DP(X)) it suffices to verify the
faithfulness of the induced action of the pure braid group, i.e. that the kernel
of Bp11—=W,, injects into Aut(DP(X)). To have an example in mind, con-
sider T2, which acts trivially on cohomology, i.e. represents an element in the
pure braid group. The action on DP(X) is non-trivial as has been shown by
Remark 8.14.

Note that linearly dependent Mukai vectors are frequent, e.g. in the example
below, where a counterexample to the assertion without the condition on the
dimension of X is explained.

Examples 8.25 That the assumption on the dimension is indeed needed can
be seen by the following example taken from [106]. Let C be a smooth elliptic
curve. Choose two closed points x1, xs € C such that O(x; — z2) is a non-trivial
line bundle of order two, e.g. let 1 be the origin and x5 a point of order two.
Clearly, k(z1), Oc, k(z2) is an As-configuration, but the induced representation

By — Aut(D"(X))

is not injective. E.g. consider Tj,,) ~ O(x;) ® (), i = 1,2, (see Example 8.10,
i)) for which one computes that

Ti(ar) © Ty = (021 —22) @ (1))
is of order two, a relation that does not hold in By.

That the braid group comes up in the context of autoequivalences of derived
categories seems rather mysterious. It is however something that is clearly fore-
seen by the principles of mirror symmetry. We refrain from making any comments
in this direction, but the reader is urged to consult [69, 106, 112].

Remark 8.26 Szendrdi constructs in [111] braid group actions for more gen-
eral configurations, i.e. of Artin groups of more complicated Dynkin diagrams.
His construction covers other geometrically interesting situations incorporating
certain phenomena coming from deforming Calabi—Yau varieties. In certain cases
he shows faithfulness of the action by reducing it to the original result of Seidel
and Thomas.

8.3 Beilinson spectral sequence

Clearly, the Fourier-Mukai transform ®¢, : DP?(P") —DP(P") whose kernel is
the structure sheaf of the diagonal Oa in P x P™ is nothing but the identity
and, as such, not very interesting. However, due to the existence of a very spe-
cial resolution of O as a sheaf on the product, there is nevertheless a highly
intriguing structure that emerges, the Beilinson spectral sequence.

We continue to use the notation F X G := ¢*F ® p*G. As in the previous
section, we denote complexes simply by &£, F, G, etc.
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Lemma 8.27 There exists a natural locally free resolution of Oa of the form

0 —= A"(O(-)HQ)) —= A" H(O(-)RQ(1)) — -

- O(—l) |Z|Q(1) —_— Opnx]pn OA 0

Proof To make the argument more transparent, let us write P™ as P(V'). The
Euler sequence can then be written as

0 (1) Ve o o) 0.

Recall that the fibre of O(—1) at a point £ € P(V) is by definition identified
with the line ¢ C V. Also, the fibre of (1) in ¢ is the subspace of those linear

maps ¢ : V—k that are trivial on ¢ C V. Thus, the Euler sequence at a point
LeP(V)is

0 0+ % * 0.
The homomorphism
O(-1)XQ(1) ——= Opv)xpv)

at a point (¢,¢') € P(V) x P(V) is by definition given by (z, )+ ¢(x), where
z € £ and @|p = 0. Clearly, the image of this map is the ideal sheaf of the
diagonal A C P(V) x P(V).

Now, using the standard construction of the Koszul complex yields the claimed
resolution: This is a very general principle that associates to any section s €
HO(X, &) of alocally free sheaf £ of rank r on a smooth variety with zero locus
Z = Z(s) of codimension 7, the Koszul complex

0 — A& o Ox Oz 0,

which is a locally free resolution of Oz. The maps are given by contraction with
the section s, i.e. p—15¢p. m|

Note that the structure sheaf of the diagonal A C X x X for more complicated

varieties (e.g. K3 surfaces) cannot be resolved by sheaves of the form F X G.
In the following, we denote the complex

00— A"(O(-1)RQ1)) — -+ —= O(-1) K Q1) ——= Opnypr

by L®. So, L® = Opnypn and L™ = \"(O(—1)KQ(1)). As an object in DP(P" x
P") the complex L® is isomorphic to the sheaf Oa.
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Proposition 8.28 (Beilinson) For any coherent sheaf F on P™ there exist
two natural spectral sequences:

_ F ifr+s=0
™S s (pn T(_ r+s __
By = H(P", F(r)) @ Q" (—r) = E"* = { 0 otherwise (8.10)
and
_ F ifr+s=0
T8 . __ s n T(_ r+s —
EP =H(P", FQ " (-r)®0(r) = E { 0ot (811)

Proof The proof is a consequence of the spectral sequence
E}® = R°F(A") = R™°F(A)

for any complex A® € DP(A) and the right derived functor RF of a left exact
functor F' (cf. Remark 2.67).

In our situation, we consider A® := ¢*(F) ® L® and the derived functor of
the direct image with respect to the second projection p : P* x P* —P". (Note
that the tensor product need not to be derived, as L® is a complex of locally free
sheaves.) Thus, A” = F(r) K Q~"(—r) and hence

R°F(A") ~ H*(P", F(r)) @ Q7" (—7)
due to the projection formula and base change (see p. 83).

On the other hand, A® is quasi-isomorphic to ¢*F ® Oa =~ . F, with the

diagonal embedding ¢ : X = A C X x X. Therefore, p.(A4°®) ~ p.(t.F) ~ F.

This proves (8.10).
Interchanging the réle of p and ¢, the same argument proves (8.11). O

Since Q7" (—r) is only non-trivial for r € [-n, 0], the £]"® in (8.10) and (8.11)
are trivial for r < —n or 7 > 0 independently of F. On the other hand, E* =0
for s < 0 and s > n. Thus, both spectral sequences are concentrated in the
second quadrant.

Corollary 8.29 Any sequence of line bundles of the form
0(a),0(a+1),...,0(a+n)
on P" defines a full exceptional sequence in DP(P™).

Proof For the definition of a full exceptional sequence see Section 1.4.
Firstly, any line bundle O(i) on P" is an exceptional object in DP(P"), for

k if¢=0
0 otherwise.

Hom(O(i), O(i)[¢]) ~ H (P",0) = {

Secondly, for a < j <i < a+n and hence —n < j — ¢ < 0 and all £ one has
Hom(O(i), O(j)[(]) =~ H*(P",0(j — 1)) = 0.

Thus, O(a),...,O(a+ n) is an exceptional sequence.
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In order to show that the exceptional sequence is full, i.e. that they generate
DP(P"), it suffices to prove that any object F in the orthogonal complement
(0(a),...,0(a+n))"* is trivial. We shall explain that this follows directly from
the Beilinson spectral sequence if the object F is simply a sheaf (or a shifted
sheaf). For genuine complexes, however, we have to go back to the proof of the
Beilinson spectral sequence.

As it is a nice application of the Beilinson spectral sequence, we prove the
special case of a sheaf first and then give the argument for the general case.

Applying (8.10) to a coherent sheaf F, or rather its twist F(—a), yields a
spectral sequence with

EP* = H(P", F(=a)(r) © " (~r) = Hom(O(i), Fls]) & 27 (=1).

Here, i = a — r. As Q7 "(—r) is non-trivial only for —n < r < 0; the same holds
true for E7"°.

If now F in addition is orthogonal to any O(i) for i = a,...,a + n, ie.
Hom(O(i),F[s]) = 0 for all s and ¢ = a,...,a + n (or, in other words,
—n < r < 0), then all E]"® are in fact trivial and hence also the object the
spectral sequence converges to, i.e. F(—a), is trivial. This proves F ~ 0.

For the general case, we shall split the resolution L® — Ox introduced before
into short exact sequences:

0 —= A"(O(-1)BQ1)) —= A" HO(-1) R Q1)) —>= Mp1 —> 0

00— My — N"O(-1)RQ1) —> Mp_s — 0

0 M, Opn xpn Oa 0.

Each of these short exact sequences can be regarded as a distinguished tri-
angle in DP(P" x P"). Tensor product with p*F and direct image under the first
projection ¢ yields distinguished triangles on the first factor:

Pory, (F) — Poprai)(F) — &, (F) — P, (F)[1]

(Note that compared to the special case treated earlier we changed the order of
the two projections here. So, morally we use (8.11) this time.)

Clearly, ®o(_jmoi(i)(F) ~ H*(P", FQQ'(i)) ® O(—i) is contained in (O(—1)).
By induction this proves that ®,,(F) € (O(—n),...,0(—i)) for all i and
eventually F o~ ®p, (F) € (O(—n),...,0).

Thus, O(—n),...,0(—1), O is a full exceptional sequence. Since tensor product
with O(a 4+ n) defines an equivalence and the image of O(—n),...,0(-1),0



Beilinson spectral sequence 183

under this equivalence is the exceptional sequence O(a),...,O(a + n—1),0(a +
n), the latter is full as well. a

Exercise 8.30 Show that also QP(p) with p =0,...,n form a full exceptional
sequence in DP(P").

Both full exceptional sequences on P™ are in fact strong.

Definition 8.31 An exceptional collection Ey,. .., E,, € D?(X) is strong if in
addition Hom(E;, E;[¢]) = 0 for all i,j and ¢ # 0.

Exercise 8.32 Prove that O,...,0(n) and O,(1),...,0Q"(n) are both strong
full exceptional collections in DP(X).

Exercise 8.33 Prove that O, 0(1,0),0(0,1),0(1,1) € D*(P! xP!) is a strong
full exceptional sequence.

The reason why the notion of strong full exceptional sequences is interesting
is the following result, which we only state.

Theorem 8.34 (Bondal) Let X be a smooth projective variety. Suppose there
is a strong full exceptional sequence Fy,..., E, € D*(X). If E :== @ E; and
A :=End(E), then

RHom(E, ):DP(X) — DP(mod—A)

is an exact equivalence. See [12].

Here, mod—A is the abelian category of right A-modules. The A-module struc-
ture of RHom(F, ) is given by composition. The theorem had first been proved
for the two exceptional sequences on P discussed above.

Remark 8.35 It is a straightforward exercise to generalize the Beilinson
spectral sequence to the relative setting. More precisely, if

T:PWN) — Y

is a projective bundle over a smooth projective variety Y with relative tautolo-
gical line bundle O, (1) and relative cotangent bundle €, then for any coherent
sheaf F there exists a spectral sequence

F ifr+s=0

EY? =m"Rm (F @ Ox(r)) @ Q" (1) = { 0 otherwise.

(8.12)
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In order to prove this, one constructs a locally free resolution

0 —= A"(@*0x(-1) @ p* Qe (1)) — -+ — ¢"Ox(=1) @ p" Qe (1)

—— Op(\)xyPW) Oa 0.

Here, p,q : P(N) Xy P(N) —P(N\) are the two projections. As before, E]"* =0
for r & [—rk(N')+1,0]. Moreover, if Rm.(F @ Or(r)) = 0 for r € [-rk(N)+1,0],
then F ~ 0.

The relative version of the above corollary produces a semi-orthogonal decom-
position of DP(P(N)) (cf. Definition 1.59). The proof, being similar to that of
Corollary 8.29, is left to the reader.

Corollary 8.36 Let N be a vector bundle of rank v. Then for any a € Z the
sequence of full subcategories

DY) ® O(a),...,m*DP(Y) @ O(a +r — 1) C DP(P(N))
defines a semi-orthogonal decomposition of D?(P(N)). See [91]. a
Exercise 8.37 Generalize Exercise 8.30 to the relative setting.

Remark 8.38 There is a wealth of other results about exceptional objects
especially on Fano varieties, e.g. P, P™ x P™. The above are only the most
classical ones. More concrete examples can be found in [103].

Very recently Kawamata has proved the long standing conjecture saying that
any toric variety admits a full exceptional collection of sheaves (see [65]). The
most amazing aspect of his proof is that one has to pass via mildly singular toric
varieties. In doing so, he actually proves the same result for the derived categories
of those. Note, however, that the stronger question, whether on a toric variety
one always finds full exceptional sequences of line bundles, remains open for the
time being.

There is plenty of literature on the subject, so we content ourselves with this
glimpse on these fascinating topics. The interested reader might start further
reading with [103].

Spherical and exceptional objects serve different purposes: the former are stud-
ied on Calabi—Yau varieties, whereas the latter are found for on varieties with
negative canonical bundle. Nonetheless, there are striking similarities between
these two types of special objects.

Not only is being spherical or exceptional phrased in terms of the Ext-groups
of the object, but both types give rise to certain actions: the spherical twists
studied in Section 8.1 and so called mutations, defined completely analogously.
(Note however that mutations do not act on the whole derived category, but
rather on collections of exceptional objects.) Moreover, braid groups appear in
both contexts.
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8.4 They go together

The striking similarity between spherical and exceptional objects can be partially
explained. In this section, we will first present two results, due to Seidel and
Thomas, that shed some light on this mysterious relationship. Work of Horja
makes clear that a mixture of both conditions leads to a new kind of spherical
object, so called EZ-spherical objects, that give rise to generalized twist functors.
The second part of this section will be devoted to some of his results. Note that
EZ-spherical objects are not just an idle generalization of what has been seen in
Section 8.1, but this notion can indeed successfully be applied to many interesting
geometric situations. Some of these will be presented on the way.

Proposition 8.39 (Seidel, Thomas) Suppose f : X —Y is a morphism
of smooth projective varieties such that f.Ox sits in a distinguished triangle of
the form

OY f*OX wy[—c] —— Oy[l]
with ¢ := dim(X) — dim(Y"). Suppose in addition that wx ~ Ox.
If £ € DP(Y) is an exceptional object, then f*E is spherical. See [106].

Proof First note that the assumed distinguished triangle excludes dim(X) = 0.
By adjunction and the projection formula, one has

Hom(f*E, f*€[i]) ~ Hom(E, € @ f.Ox|i]).
Applying Hom(E, ) to the distinguished triangle

E— ER [.Ox —> EQuy|—c ——= £]1]

yields a long exact sequence on which the following conclusions are based.
By using Serre duality, one finds
Hom(&, € @ wy[—c —i]) = Hom(&, E[dim(X) +4])* =0
for i = 0,1 (> —dim(X)), which allows us to conclude that
Hom(€,€ ® f.Ox) =Hom(E, &) = k.
Similarly, Hom(€, £[dim(X) +4]) = 0 for i = 0,1 yields
Hom(&,€ ® f.Ox[dim(X)]) ~ Hom(&, £ @ wy [dim(X) — ¢])
~ Hom(&, &) = k.
All the other groups are trivial. This proves the assertion. O
Remark 8.40 i) For ¢ > 0 the condition of the proposition is satisfied if

' Oy ifi=0
R'f.Ox =< wy ifi=c
0 otherwise.



186 Spherical and exceptional objects

ii) The analogy ends here. In general, the pull-back of an exceptional collection
&1, ..., &y does not give rise to an A,,-configuration on X (not even for m = 2).

Examples 8.41 The following three typical examples are taken from [106].

i) Suppose f : X —Y is a smooth morphism with honest Calabi—Yau mani-
folds as fibres F, i.e. wrp ~ Op and H'(F,Op) = 0 for 0 < i < c. E.g. the
fibres F could be elliptic curves or K3 surfaces. The smoothness assumptions
can be weakened.

ii) Consider a K3 surface X realized as a degree two cover f : X —P? ramified
along a sextic. Here, ¢ = 0.

iii) Suppose f : X &= Y is the inclusion of a smooth hypersurface with
O(X) ~ w}. The inclusion does indeed satisfy the assumptions of the pro-
position with ¢ = —1. Concrete examples are provided by a quartic in P? or
a quintic in P*.

In Proposition 8.4 an exceptional object becomes spherical under pull-back.
In the following result we study the direct image of an exceptional object.

Proposition 8.42 (Seidel, Thomas) Suppose i : Y <= X is a smooth
hypersurface with i*wx ~ Oy . If € € DP(Y) is exceptional, then i.E is a spherical
object in DP(X). See [106].

We omit the proof as it is very close in spirit to the arguments of the subsequent
discussion. (In fact, the argument will be given in Examples 8.49, ii) but it will
use a result of one of the later chapters.)

Propositions 8.4 and 8.4 can be seen from a broader perspective, as was
explained by Horja in [46]. His main result shall be presented here, although
under a few simplifying assumptions (e.g. smoothness of all the participating
varieties). Also note that the main result of Section 8.1 can be viewed as a spe-
cial case of what follows. For methodological and historical reasons we postponed
the general case until now.

For the rest of this section we fix the following notation. Let X, E, and Z
be smooth projective varieties, such that F comes with an embedding ¢ and a
smooth surjective projection:

i:E“—— X, ¢:E—=>Z
The various dimension will be denoted d := codim(E < X), n := dim(X),
and k := dim(q) = dim(F) — dim(Z).
In the following we shall be interested in objects & € DP(E) that behave
like exceptional objects on the fibres of ¢ and more like spherical objects with

respect to the ambient variety X. Before stating the precise condition, we need
to introduce for any G € DP(Z) the natural morphism

061G — 4. (£ 0 0. (E 0 09)).

The most important case is that of G = O.
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Here, i' : DP(X)—=DP(FE) is the functor
F —— *F @ w;[dim(i)] = i*F @ wg @ wk|e[—d],

which is right adjoint to i, (see p. 86). More precisely, for all 7/ € D(E) one has
Homx (i, F', F) ~ i, Homg(F',i'F) and in particular i,i'F ~ Homx (i.Og, F).

By definition ¢g corresponds to the identity i, (€ ® ¢*G) —i.(E ® ¢*G) under
the chain of functorial isomorphisms

Hom(G, ¢ (£Y @ i, (£ ® ¢*G)))
= Hom(q*G, &Y @ i'i.(€ ® ¢*G))
~ Hom(q*G ® &,i'i.(£ ® ¢*G))
~ Hom(i. (€ ® ¢*G),i.(€ ® ¢*G)).

Definition 8.43 An object £ € DP(E) is called FZ-spherical if the following
two conditions hold true:

i) For any G € DP(Z), the natural morphism g introduced before can be
completed to a distinguished triangle of the form

PG

G — ¢.(V®ii,(E®q¢G) —= L®G[—d—k] — G[1] (8.13)

with £ isomorphic to a line bundle on Z (independent of G) with the property
that q* L is isomorphic to the restriction of a line bundle on X.
il) There is an isomorphism € ® i*wx ~ &.

Remark 8.44 In many situations pg will simply be pp, ®idg, e.g. if d =0,
and it then suffices to verify condition i) just for G = Oz. Of course, the problem
at this point is that in general there is no reason to believe that ¢,(£Y ® i!i*(é' ®
*G)) ~ ¢.(EY ®i'i.(E)) ®G for all G. However, as we will see, this is needed for
the proof of the main result.

In fact, in a first version of his paper Horja only required i) for G = O. The
definition he eventually adopted is different from ours. Further comments can be
found in Remark 8.50.

Exercise 8.45 Show that £ ~ wyz. (Dualize (8.13) for G = Oz and apply
Grothendieck—Verdier duality.)

The following discussion is modeled on the arguments in Section 8.1.

Spanning class Consider Q := 4 | Qs with
Q= {i.(E®q¢*G) | G € D*(2)}
Qy:={FeD"(X) | q.(§Y ®i'F) =0}
Note that this €2 is actually invariant under shift.
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In order to show that © is spanning we first consider an object F € Qf, i.e.
Hom(i. (€ ® ¢*G),F) = 0 for all G € D?(Z). Using i, - i and ¢* - g., this
implies Hom(G, ¢.(§Y ®4'F)) = 0 for all G € D(Z) and thus ¢.(£Y ® i'F) ~ 0.
In other words, F € Q. If also F € Q5 , then it would be orthogonal to itself
and hence trivial. Thus, any object F € Q- is trivial.

The triviality of any F with Hom(F,H) = 0 for all H € Q can be reduced
to the argument above. Indeed, combining with Serre duality Hom(F,H) ~
Hom(H,F @ wx|[n])* it yields F @ wx ~ 0, which is equivalent to F ~ 0.

Exercise 8.46 Prove the vanishing Hom(F;, F3) = 0 = Hom(F2, F;) for any
Fi € ;, i =1,2. (Condition ii) is used for the second one.)

FEZ-spherical twist The Fourier—Mukai kernel for the EZ-spherical twist we are
interested in will again be obtained by a cone construction. We will use the
following notation:

AE(—Z> Ax

ExzEC“——> X xX.
J

Here Ap C E X E and Ax C X x X are the two diagonals, which will tacitly
be identified with E, respectively X.

First note that adjunction induces a natural morphism i,i'Op, —=Oa . Its
direct image under ¢ yields a morphism L*i*i!OAX —1,0n .

Next, the trace map induces a natural morphism

8V RERi'Opa,) — kui'Oay
which can be composed with the restriction map
(Y @i0x) Rz & — ke (K" (€Y ®@i'Ox) Kz E)) 2 k(Y @ E®i'Ony).
(As the notation suggests K denotes the tensor product of the two sheaves that
are obtained by pull-back under the two projections E x z E—F.)

Since j*k*z’!(’)AX ~ L*i*i!OAX, the composition of the two morphisms leads to
the natural morphism

Jx ((Ev (X)i!OX) Kz 5) — Oay.



They go together 189

The cone of this morphism, i.e. the object completing it to a distinguished
triangle, shall be denoted

Pg:=C (j* (Y @i0x)Rz E) — OAX) :

Definition 8.47 For an EZ-spherical object € € DP(E) one defines the induced
FEZ-spherical twist Tg as the Fourier—Mukai transform

Te := ®p, : DP(X) — DP(X).

Cone description of the twist Similarly to the standard twist, the image
of a complex under the EZ-spherical twist T' := Tg can be described by a dis-
tinguished triangle (cf. Exercise 8.5). More precisely, for any F € DP(X) there
exists a distinguished triangle

T(F)-1] — i (¢ (EV @ F) 9 E) —>= F —= T(F).  (8.14)

This is evident from the description of the Fourier—Mukai kernel of T and ' F ~
i'Ox ®i*F.
Moreover, by construction, the morphism 7 corresponds to the identity id :
¢«(EY @' F) —>q. (Y @' F) under the functorial isomorphism
Hom(i,(¢*q. (Y @ i'F) @ £), F)
~ Hom(q*¢.(EY @' F) @ £,i'F)
~ Hom(q*q.(EY @ i'F), Y @ i' F)
~ Hom(q,(EY ®i'F), q. (Y @ i' F)).
Now consider F € Q. Then i,(¢*¢. (€Y ®i'F) ® £) = 0 and hence
T(F) ~ F.
If, on the other hand, F € Q, i.e. F = i.(€ ® ¢*G) for some G € DP(Z), then
i(¢' (£ Qi F) © ) ~in(q e (€Y @i (E® ¢°G) B E).

Now use the condition i) on an EZ-spherical object. Applying the exact
functors ¢*, £ ® (), and 4. to (8.13), we obtain the distinguished triangle

F— i (0 (0.6 0 (€9 °9)) 9 8)

— L (E®¢G)Rq¢ L) [—d—k — F[1]. (8.15)
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One checks that 7 o 9 is the identity. Combining the distinguished triangles
(8.14) and (8.15) and applying the axioms TR in the usual way

(8.15)
° o — > ()
o[-1] o e (8.14)
v

allows us to deduce an isomorphism
T(F) = (0. ©¢°G) ~ in(E © ¢ G) @ " L)[L — d — K,

which describes T'(F) for F € Q. In particular, we have shown that with F € Q;
(i =1,2) also T(F) € ;.

Fully faithful The criterion for full faithfulness via a spanning class applies.
Indeed, if Fy,Fy € Qo, then T(F;) ~ F; yields isomorphisms Hom(F;, Fa) =~
Hom(T'(F1),T(Fo)). U F1,Fa € Qq, 1.e. F; = i.(E®q*G;) for certain G;, i = 1,2,
then

Hom(T'(F1),T(F2)) ~ Hom(€ ® ¢"(G1 ® L),i!i*(f ®q" (G2 ® L)))
~ Hom(€ ® ¢*G1,'i.(E ® ¢"G2)).

Note that for the last isomorphism we use the assumption that ¢*L£ is the
restriction of a line bundle on X.

As 7 and 5 are orthogonal to each other, the case F; € Q1 and F> € Qs
need not be tested. In order to prove 2; C Q3 one uses condition ii).

Equivalence We have seen that T = Tg is fully faithful. So, writing it as
the Fourier-Mukai transform T' = ®p, it suffices to check that Ps ® ¢*wx =~
Pe ® p*wx. But this follows easily from the explicit description of Pg and the
assumption £ ® i*wx ~ &.

We summarize the discussion by the following

Proposition 8.48 (Horja) The EZ-spherical twist Te associated to an EZ-
spherical object £ € DP(E) induces an autoequivalence

Te : DY(X) — DP(X).

See [46]. O
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Examples 8.49 i) Let Z = Spec(k). Then & is EZ-spherical if and only if i€ is
spherical. In this case, the spherical twist T}, ¢ is isomorphic to the EZ-spherical
twist Te.

Indeed, in this case adjunction allows us to interpret R7q.(EV ® i'i.&) as
Hom(E,4'i,£[j]) ~ Hom(i.E,i.E[j]). The assumption £ ® i*wx =~ & shows
that Hom(i.&,1.&[n]) is at least one-dimensional. This suffices to conclude the
equivalence. In order to verify T; ¢ ~ T¢ one may use the cone description
(8.14) or identify the kernels directly (use Grothendieck—Verdier duality to show
1. (EY @' Ox) ~ (i.(£))Y).

ii) Let E C X be a smooth divisor and Z = Spec(k). For the discussion of
this case we invoke a few things that will only be explained in Chapter 11, e.g.
Corollary 11.4. In particular, we shall make use of the distinguished triangle

E®Op(—E)[l] — i*i,& — £ — E®Op(—E)[2].

Tensoring with €Y @ Og(E)[—1] turns this into a distinguished triangle of the
form

EVRE — EV®ii.E — EVREROR(E)-1] — &Y ® &1].

Now apply ¢, to it. If £ ® i*wyx ~ &, then £ is EZ-spherical if and only if £ is
an exceptional object in DP(E). Similar arguments also prove Proposition 8.4,
but this is of no importance as FZ-spherical is enough to ensure that the twist
Te, which is isomorphic to T;, ¢, is an equivalence.

iii) This example generalizes the approach of Proposition 8.4. Consider the
variety F := F x Z which is assumed to be of codimension one in X and suppose
there exists an exceptional object £ € DP(F). Then the pull-back 7{& via the
first projection describes an FZ-spherical object. Of course, g : E— Z is chosen
to be the second projection. We leave the details to the reader.

iv) Let ¢ : E—=Z be a P'-bundle and E C X a smooth divisor in a variety
X with trivial wyx. Then O is EZ-spherical. More generally, any line bundle on
FE is EZ-spherical.

The concrete geometric situation we have in mind here is the exceptional
divisor E = P(25) C X inside the Hilbert scheme X = Hilb?(S) of length-two
subschemes in a K3 or abelian surface S.

Remark 8.50 For d > 0 Horja calls £ € DP(E) EZ-spherical if ¢.(£Y ® £) ~
Oz and ¢, (Y ® E @ N*N) = 0 for 0 < k < d. Here N is the normal bundle
of E C X. This definition has of course the advantage that it does not involve
arbitrary objects G € DP(2).

It can be shown, though the proof is not completely trivial, that his definition
is stronger than the one we worked with here.
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ABELIAN VARIETIES

From a historical point of view, this chapter should have come first. Mukai’s
starting point for introducing what is nowadays called the Fourier—Mukai trans-
form was the Poincaré bundle on the product of an abelian variety and its dual.
It yields an important instance of a derived equivalence between a projective
variety and another, in general non-isomorphic, one. As K3 surfaces treated in
Chapter 10, abelian varieties occupy a distinguished place between varieties with
ample canonical and those with ample anti-canonical bundle.

The first section is meant as a reminder of those facts from the rich theory
of abelian varieties that are relevant from our derived point of view. The story
begins in Section 9.2 where we prove Mukai’s result saying that the Poincaré
bundle taken as a Fourier—-Mukai kernel does indeed define an equivalence.
For principally polarized abelian varieties this equivalence can be viewed as an
autoequivalence and, as Mukai showed, extended to a certain Sly-action.

Sections 9.4 and 9.5 present a general investigation of derived equivalences
between abelian varieties and derived autoequivalences of a single abelian variety.
Most of these results are due to Orlov. The situation is much more interesting
than for varieties with ample (anti-)canonical bundle, but, contrary to the case
of K3 surfaces, everything one wants to know can in principle be computed.

Throughout, we will work over an algebraically closed field k of characteristic
zero, so that we can freely use all results of the preceding chapters. Sometimes,
more direct arguments can be given by actually working over the complex num-
bers, e.g. when we want to use singular cohomology. However, most of the results
of this chapter hold true for abelian varieties over arbitrary fields.

9.1 Basic definitions and facts

Let us begin with a few recollections from the theory of abelian varieties necessary
for the understanding of the later sections. For a thorough treatment see any of
the many text books on abelian varieties, e.g. [11, 34, 85].

Let us begin with the algebraic definition of an abelian variety:

Definition 9.1 An abelian variety A is a projective connected algebraic group
over k.

In particular, A comes with morphisms

m:AxA——> A, +1:A——> A, ande:Spec(k) —= A
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satisfying the usual axioms of a group. In the sequel we often write a + b for
m(a,b), —a for t(a), and 0 € A for e € A.
Any closed point a € A gives rise to the translation

ty: A = A, b+—— m(a,b).

Remark 9.2 Here is a list of some basic facts:

i) Any abelian variety is smooth and the underlying group is commutative.

ii) If k£ = C, then the associated complex manifold, by abuse of notation also
denoted by A, is a compact complex Lie group.

iii) More precisely, the associated complex manifold is isomorphic (as a com-
plex Lie group) to a complex torus C9/T". This can be made concrete in various
ways. Here are two:

Consider the exponential map exp : T, A — A. It indeed induces an isomorph-
ism of T, A/T for some discrete subgroup I' C T, A.

Alternatively, consider the Albanese morphism

A — Alb(A) = HO(A,Q)*/H, (A, Z)

given by a+— f:. Note that the quotient is indeed a torus, due to standard
Hodge theory.
Once (the induced complex manifold) A is written as C9/T'; one has

Hi(A,Z) =~ \'T".

iv) The cotangent bundle Q4 of an abelian variety A is trivial. In particular,
wa ~ Oy and ¢;(4) =0, > 0.

v) The second description in iii) allows us to give a quick proof of the fol-
lowing assertion: A morphism ¢ : A; — Ay between two abelian varieties is
a homomorphism, i.e. also compatible with the group structure, if and only if
p(e1) = ea.

Indeed, any morphism ¢ : A; — A5 defines a natural linear map

QO* : HO(Al,QAl)* e HO(AZ)QAQ)*7

which is compatible with the Albanese map if and only if p(e1) = es. Clearly,
dividing out by the lattices Hi(A;,Z), i = 1,2, defines a homomorphism.
An important example of a homomorphism is the morphism ‘multiplication
by n’:
n:A—— A, ab—— n-a,

which is defined for any n € Z. Another description for n > 0 is given by mo A,
where A,, : A— A" is the n-fold diagonal embedding and m : A™ — A is the
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sum. For n < 0 one has n = ¢t o (—n). (As we used ¢ to denote the inversion on
an abelian variety, we had to switch to A for the diagonal embedding.)

Multiplication by n # 0 is a typical case of a very interesting class of
homomorphisms:

Definition 9.3 Anisogeny between two abelian varieties A;, i = 1,2, is a finite
surjective homomorphism Ay — As. The degree of an isogeny ¢ : Ay — As is
the order of the kernel K, := ¢~ *(e2).

It is easy to determine the degree of the multiplication by n : A— A, namely
deg(n) = n?9, where g = dim(A) as before.

Let us next discuss line bundles on abelian varieties. We start out with an
important and completely general result.

Proposition 9.4 (See-saw principle) Let X be an irreducible complete vari-
ety, T an integral scheme, and L € Pic(X x T'). Suppose that Ly := L|x 4y 18
trivial for all (closed) pointt € T.

Then there exists a line bundle M on T with L ~ p*M. See [85, 1.5, Cor.6].

Sketch of proof First note that a line bundle L on X is trivial if and only if
HO(X,L) # 0 and H°(X, L*) # 0. Semi-continuity of h°(L;) shows that being
trivial is a closed condition. Thus, testing closed points is enough.

Standard results on semi-continuity and direct images also show that the
assumption h°(L;) = 1, t € T, implies that M := p,L is a line bundle on
T. The adjunction morphism p*M = p*p.L — L is an isomorphism on each
fibre X x {t} and hence an isomorphism on X x T O

Remark 9.5 Here are useful additions to the above:

i) If moreover L is trivial on at least one fibre of the projection X x T'— X
then L is trivial.

ii) Suppose L and L’ are two line bundles on X x T such that L; ~ L} for all
closed points t € T. Then L ~ L’ ® p* M for some line bundle M on T.

Examples 9.6 Suppose L is a line bundle on an abelian variety A. Then
m'L~q¢Lep'L < t;L~1L forallacA.

As usual, p,q: A x A—= A denote the projections. Indeed, (m*L)|,-1(q) ~ t; L
and (¢*L ® p*L)|,-1(a) = L and, therefore, the above criteria apply.

The following is a very useful consequence of the see-saw principle:

Theorem 9.7 (of the cube) Let X xY x Z be the product of three irreducible
complete varieties with chosen closed points xg € X, yo € Y, and 2y € Z.
Then, a line bundle L on X XY X Z is trivial if and only if the three restrictions

Llzoyxyxzs Llxx{yoyxz, and L|xxy x{z} are trivial.

The assumptions ensure that L is trivial on the fibre of the projection X x
Y X Z—= X over xg € X and one has to show that this is actually true for any
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fibre. Connecting any other point by a complete curve with zg, one reduces to
the case that X is a curve. For the rest of the argument, see e.g. [85].

If all three varieties are smooth projective with H( ,Z) = 0, then the result
follows from the inclusion Pic( ) “—= H?( ,Z) and the Kiinneth formula
H?>(XxY xZ,7) = H*(X,Z)® H*(Y,Z)® H*(Z,Z). If e.g. H'(X,7Z) # 0, then
one can argue with the exponential sequence.

Let us mention a few immediate consequences of the theorem of the cube for
line bundles on abelian varieties:

i) Consider the three projections m; : A x A x A— A together with the
morphisms m;; : A x A x A— A given as m o (m;, 7;), and the triple sum
m:Ax Ax A—A, (a,b,¢c)>a+ b+ c. Then

m' LRmiL@nyL@miL ~misL @ misL @ misL. (9.1)

This follows directly from the general statement, where the distinguished closed
points in all three factors are chosen to be the origin e € A.

i) Consider the multiplication n : A— A. Then for any line bundle L on A
one has

n*L ~ L(Wn)/2 g xp(n*=n)/2, (9.2)

Pull-back the equation (9.1) via (n,id,:) : A—A x A x A, a+—(na,a, —a).
This does not give (9.2) right away, but can be used to express (n 4+ 1)*L in
terms of n*L and (n — 1)*L. Then one argues by recursion, the cases n = 0,+1
being trivial.

iii) The last application we want to mention is the theorem of the square. It
says

i LOL~tLotL (9.3)

for all line bundles L on A and all closed points a,b € A. This isomorphism is
obtained directly as the pull-back of (9.1) via A—=A x A x A, c—>(c,a,b).
Another way to express the same fact is to say that

oL+ A(k) — Pic(A), a —— ;LR L* (9.4)

is a group homomorphism. Here, A(k) denotes the set of closed points of A.
Definition 9.8 Let A be an abelian variety. Then

Pic’(A) := {L € Pic(A) | t:L ~ L for all a € A},
which is a subgroup of the Picard group Pic(A).

Translation invariant line bundles enjoy many interesting properties. E.g. if
L € Pic’(A), then for all n € Z one has

n*L~L" (9.5)
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Indeed, using (9.2) one reduces to the case n = —1, which can be proved by
pulling-back m*L ~ ¢*L ® p*L under the morphism A— A x A, a+—(a, —a)
(use Example 9.6).

Slightly more difficult to prove is the fact that non-trivial translation invariant
line bundles have trivial cohomology:

Lemma 9.9 Let O % L € Pic’(A). Then H*(A,L) =0 for all i.

Proof The first step is to show that H%(A, L) = 0. Indeed, if not then there
exists a non-trivial section s of L, which in turn induces a non-trivial section ¢+*s
of «*L. If L is not trivial, both vanish along a non-trivial effective divisor and so
does their tensor product, which is a section of L ® +*L. The latter is trivial due
0 (9.5). Contradiction.

Suppose k is minimal with H*(A, L) # 0. Then use m*L ~ ¢*L ® p* L and the
Kiinneth formula to write

HYAx Am*L)= @ H'(A, L)@ H/(A,L).
itj=k
As A— A x A, a+>(a,e) composed with m is the identity, the pull-back
H*(A,L)—= H*(A x A,m*L) is injective. However, this yields a contradiction
using that k is minimal and H°(A, L) = 0. 0

Until now, we have studied Pic’(A4) as a group. Let us next try to endow it
with a geometric structure. Using the exponential sequence, one defines the dual
variety

A:= H(4,0)/H'(A,2) —> Pic(4) = H(4,0") —— H*(4,2).

Again, Hodge theory (see, e.g. [42, 51]) tells us that A has the structure of a
complex torus. The group structure induces the usual morphisms, which shall
be called m, i, respectively é. R

It is not difficult to show that the two subgroups A and Pic’(A) of Pic(A) actu-
ally coincide. One inclusion is easy: Since the induced action of t, on H(4, ) is
trivial, one has A C Pic(A). On the other hand, for L € Pic’(A) one uses 1*L ~
L* and hence v*c1(L) = —ci(L), but t*[g2(a,z) = A’ lavaz) = A’ (=1) = id.
Since H2(A,Z) is torsion free, one finds ¢; (L) = 0 and, therefore, L € A.

Over the complex numbers, line bundles on an abelian variety (or, more gen-
erally, on a complex torus) can be described in terms of Appell-Humbert data.
This part is slightly technical and we encourage the reader to consult [67, 85] for
more details.

Let us construct line bundles on a complex torus A = V/A as quotients of the
trivial line bundle C x V' on V by a lifted action of A. More precisely, one defines
A (z,0) = (Ax(v) - z,v+ A), with A: A x V—C* satisfying

A>\1 (U + )‘2) : A>\2 (U) = A/\1+)\2 (7})
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An Appell-Humbert datum (AH-datum for short) is a pair («, H), where
a:A—TU(1) and H an hermitian form on V such that:

m(H)(A x A) CZ and oA + Ag) = (=1)mEDAA2) LX) - a(Ag).
To every AH-datum («, H) one associates
A)\<’U) — a()\) . eﬂH(U,)\)+(7T/2)H(>\7)\)7

which satisfies the above cocycle condition. Thus, to any AH-datum («, H) one
can associate a line bundle L, 7y on A.

Theorem 9.10 The map (a,H)|—>L(a,H) defines an isomorphism of groups
{(a, H) | AH — data} <—> Pic(A).
Here, the group structure for AH-data is given by (o, H)+ (o, H') = (a- o/, H+
H'). See [85, Ch.1.2].
The first Chern class of the line bundle L, gy can be described in terms of
the AH-datum («, H) as
c1(Lia,rry) = Im(H /\ A* = H?(A, 7).

In particular, L, gy € Pic’(A) if and only if H = 0. Conversely, if L € Pic(A)
corresponds to a point [v] € HY(A,O)/HY(A,Z) = A then L = L(a,0) with
a(A) = @i,

We next wish to construct the Poincaré bundle P on A x A by means of the
AH-construction.

We want the Poincaré bundle to have the following two characteristic
properties:

) If a € A corresponds to a line bundle L € Pic(A) on A, then P|rayxa is
isomorphic to L.
ii) The restriction P|z, (., is trivial.

From the see-saw principle it immediately follows that the Poincaré bundle, if
it exists, is unique. R
To describe an AH-datum for the product A x A write

Ax A= (V*xV)/(A* x A) = (H'(A,R) x Hi(A,R)) / (H (A, Z) x H,(A,Z))
and define

ap: HY(A,Z) x H(A,Z) — U(1), (A\,p) — (1) x)
and

Hp ((ul,m), (UQ, ’1}2)) = —’Ul(i’U,Q) — Ug(’iul) + i(Ul(UQ> — Ug(ul)).
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Then one verifies that the associated line bundle P satisfies i) and ii). Also
note that the definition is completely symmetric, i.e. the line bundle P can also

be seen as the Poincaré line bundle on A x A = A x A.
Exercise 9.11 Show that (¢ x id)*P ~ (id x ¢)*P.

The first Chern class ¢1(P) € H%(A x A, Z) of the Poincaré bundle P can be
described as follows.
Using the Kiinneth formula, one writes

H*(Ax A,7) = H*(A,7) ® H'(A,Z) ® H'(A,Z) ® H*(A, 7).
By construction of the dual abelian variety, H'(A,Z) = H'(A,Z)*. Then c¢1(P)

is contained in
HY(A,Z)® HY(A,Z) = H' (A, Z) ® H'(A,Z)*
and corresponds to the identity there. If we choose a basis {e;}, i =1,...,2g, of
H'(A,Z) and denote the dual basis by e}, then
c1(P) = Zei Nej.
An easy calculation yields
a(P)" = Z (=)™ D/2nl (e, A Neg,) A (ep, NoooNeg ) (9.6)
0 <<y

and, in particular,

c1(P)29/(29)! = (=1)%(es A ... A eag) N (el AL A ezg). (9.7)
Remark 9.12 Let us be a little more specific about the identification p :
A—=A. By definition this is the isomorphism such that under

pxid - ~

Ax A

o~

AxA Exi

where the second isomorphism is given by interchanging the two factors, the
Poincaré bundle P for the abelian variety A corresponds to the Poincaré bundle
P for the dual abelian variety A. R

In the above notation, ¢ (P) = > e; Aef and ¢1(P) = > el Ael*. Here we use
the identification H'(A,Z) ~ H'(A,Z)* ~ H' (A, Z)**.

Thus, due to e; Aef = —ei A e; the isomorphism p : A~ A induces on
cohomology the homomorphism

~

HYA,Z) —> H'(A,Z) —= HY(A,Z)**, ei+—> —ef,

which is the standard one up to the sign.
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Consider the projections mys : AxAxA—=Ax A, To3: EXAXE%AXA\,
Ty Ax Ax 121\‘>A7 and M3 : AxAxA—=Ax A given as the product of
ﬁz:gxﬁﬁﬁandm.

Lemma 9.13 7},P ® w33 P ~ mi;P.

Proof This can be seen by using the see-saw principle with respect to ms.
Restricting 73, P @75, P and mj;P to a fibre 7, ! (a) yields ¢*P, ® p* P, respect-
ively m*P,, where p,q : A x A—= A are the two projections. Since P is also
the Poincaré bundle for A with A viewed as the dual of E, the fibre P, is in
Pic’(A). Thus, ¢*P, ® p*Pa ~ Mm*P, (cf. Example 9.6). Restricting both line
bundles to {é} x A x {é} yields in both cases the trivial line bundle. Thus,
TP @ mha P o~ misP. u

More algebraically, the pair (P, E) represents the Picard functor Pic%: To any
variety S one associates the set

Pic% (S) := {M € Pic(S x A) | M, € Pic’(A) for every closed s € S}/ ~ .

Here, M ~ M’ if there exists a line bundle L on S such that M ® ¢* L ~ M’. The
functor is contravariant by pulling-back a line bundle M via a given morphism
f:T—=8,ie. (f xida)*: Pic%(S) —=Pic%(T).

Theorem 9.14 The dual variety A is a smooth projective variety that repre-
sents the Picard functor PicY, i.e. there exists a natural isomorphism Pic% ~
Hom( ,A). The Poincaré bundle P € Pic%(A) corresponds to id ;. See [85,
Ch.IL.8].

In other words, for any M € Pic%(S) there exists a unique morphism
fu:S —— 24

with M ~ (far x id4)*P. Moreover, if the restriction of M to S x {e} is trivial,
then M ~ (far xid4)*P. Note that in particular, fys(s) € A corresponds to the
line bundle on A given by M| 4.

With this general result at hand, one describes ¢y, : A%fi a—1L ® L*
(see (9.4)) more functorially as follows.

Consider the line bundle Q@ := m*L ® (L* X L*) on A x A. Restricted to
{a} x A it yields the line bundle t*L ® L* € Pic’(A). Hence there exists a
morphism ¢ = fgo : A—= A such that (o, x ida)*P ~ Q. In particular,
¢1(a) € A corresponds to the line bundle ti:L ® L*. In fact, since the restriction
of m*L® (L*X L*) to A x {e} is trivial, one has

(o X ida)*P ~m*L ® (L* K L*). (9.8)
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Exercise 9.15 Show that ¢r(—a) = ¢r-(a) or, in other words, ¢, ot = @r-.
Also note that ¢r(—a) = ¢r(a)*, which can also be written as pp ot =1* o
once Pic’(A) has been identified with the dual abelian variety A.

Let us next study the homomorphism ¢, for L ample.

Lemma 9.16 If L is an ample line bundle on A, then vy : A—=A is finite,
i.e. an 1Sogeny.

Proof Suppose ¢y, is not finite. Then there exists a curve C' C A contracted
by ¢ to a point in A. In other words, for any closed point a € C' C A one has
t*L ~ L.

Consider the projection p : A x C'—C. For any a € C one has m*L| sy {a} ~
t*L ~ L. By the see-saw principle this shows that m*L|axc ~ ¢*L ® p*N for
some line bundle N on C'. On the other hand, m*L|eyxc =~ L|c and, therefore,
N ~ L|C.

Thus, m*L|axc =~ ¢*L ® p*(L|c), which is ample. This contradicts the fact
that the restriction of m*L to m~1(e), which is the curve {(—a,a) | a € C}, is
trivial. a

A polarized abelian variety is a pair (A4, L) consisting of an abelian variety A
and an ample line bundle L. Often, the pair (A, ) is called a polarized abelian
variety. Note that L and L® M with M € Pic’(A) define the same ¢, : A—A.

The degree of the isogeny ¢ can be explicitly computed as follows.

Lemma 9.17 Let (A, L) be a polarized abelian variety. Then deg(¢r) = x(L)?.

Proof Firstly, x(A x A, P) = (1/(2g)! ") [c1(P)?9 = (—1)9 (by the Hirzebruch-
Riemann—Roch formula) and (9.7).

Secondly, x(A x A, (pr, x id)*P) = deg(pr) - X(A x A, P). Together with
(or X 1d)*P ~m*L ® (L* K L*) (see (9.8)), this yields

(—1)7 - deg(pr) = X(A x A,m*L® (L*K L),

Now use that p,(m*L ® ¢*L*) is concentrated in the finitely many points of
the kernel of ¢ (see Lemma 9.9) to conclude that

XAXxAm* L (L*RL")) =x(A,p.(m"L®q¢"L*) @ L")
= X(A,px(m"L®q"L7))
= x(A x A,m*L ® ¢"L*).
Altogether, we obtain
(—1)7 - deg(pr) = x(Ax A,m"L®@q L")
X(A x A, (m x id)*(L K L*))
X(Ax A, LRL") = x(A,L) - x(4,L")
(=1)7x(L)*.
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For the last equality we use again the Hirzebruch—Riemann—Roch formula.
O

In fact, due to the vanishing of the higher cohomology groups H*(A, L), i > 0,
for any ample line bundle L (e.g. by Kodaira vanishing), one also has deg(¢r) =
RO(A, L)2.

Definition 9.18 A principally polarized abelian variety is a polarized abelian
variety (A, L) with deg(pr) =1, i.e. pp : A" A, or, equivalently, x(L) = 1.

9.2 The Poincaré bundle as a Fourier—Mukai kernel

Historically, the starting point of the theory of Fourier—Mukai transforms is the
following result due to Mukai.

Proposition 9.19 (Mukai) If P is the Poincaré bundle on A X E, then

-~

®p : DP(A) — DP(A)

18 an equivalence.
Moreover, the composition

Dp Op
D" (4)

Db (A) Db (A)

is isomorphic to I* o [—g], where g = dim(A). See [79].
Proof Let us apply Proposition 7.1. Choose two closed points a, 5 € A, Then,
Bp(k(a) = Po and Bp(k(F)) =~ Py,
are line bundles on A. Clearly, Hom(P,, Psli]) = H'(A, P} ® Ps). Thus,
Hom(P,, Psli]) =0

for i & [0, g]. Moreover, for i = 0 and a = 3 this equals H°(A4,04) = k.

Thus, it suffices to verify that Hom(P,, Pgli]) = 0 for o # [ and all . But in
this case, Py, Ps € Pic’(A) are non-isomorphic and hence H*(A, P ® Pg) = 0
(see Lemma 9.9). Hence, ®p is fully faithful and, since the canonical bundles of
A and A are trivial, indeed an equivalence.

Let us now study the composition, which is isomorphic to the Fourier—-Mukai
transform with kernel R := m13.(7],P ® 753P) (see Proposition 5.10), where we
use the following diagram

,\ T12 T23

AxA<——AxAxA—> Ax A

o)
X
)
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In order to determine the support of R, let us study the cohomology of 7, P ®
753 P on the fibres of m3. For a closed point (a, 8) € A x A the restriction of
Ty P@7as P to 13 (a, B) is the line bundle P, ®@Ps € Pic’(A). By Lemma 9.9 we
know that a non-trivial line bundle L € Pic’(A) has no cohomology whatsoever.
Thus, H*(A, P, ®Pg) # 0 if and only if P, ® Pg ~ O, i.e. if and only if 5 = —a.
In particular, supp(R) is contained in the graph I'; of i.

We will show that R is isomorphic to the trivial line bundle on T'; shifted by
[—g]. Recall that 775P ® m33P is isomorphic to mi;P (see Lemma 9.13).

This can be combined with the fibre product diagram

i

Since m is flat, base change yields

— A

?>><;><
[t=)

Ax A

R =13, (T19P @ mhaP) =~ mi3.Mi3 P >~ m*q.P.

For the final step one shows that ¢.P ~ k(é)[—g]. This immediately then yields
R ~ m*k(é)[—g] ~ Or,[—g], which is what we had set out to prove.

To prove ¢, P ~ k(é)[—g], we shall use that ®p : DP(A) —=DP(A) is fully
faithful and that the support of Riq.P is contained in {é} (cf. the argument
above that showed that R is concentrated in I';). Thus it suffices to show that
Hom(O 3, R'q.P) = 0 for i # g and Hom(O4, R%¢,P) = k. To this end, we
consider the spectral sequence

Ey* = Ext" (0, R*q.P) = Ext"**(03,4.P).

Asevery R®q,P has support contained in {é}, the E}°-terms are all trivial except
for » = 0. In particular, E5® = EZ® for all r, s.
For the limit one computes

Ext""*(03,¢.P) ~ Hom(O 3, ¢. P[r + s])
=~ Hom(®p(k(e)), @p(Oa)[r + s])
~ Hom(k(e), Oalr + s]) =~ HI™""%(A, k(e))*.

Hence, Hom(O 3, R®q.P) = H97°(A, k(e)), which implies the result. O

Remark 9.20 The original argument of Mukai did not, of course, use Propos-
ition 7.1. Clearly, once the composition has been described as i* o [—g], one also
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finds that ®p is an equivalence (use the symmetry of the situation with respect
to A and A).

Thus, in the above proof, the only thing that has to be changed in order
to avoid using Proposition 7.1 is the argument proving ¢.P ~ k(é)[—g]. In the
proof given above, we have used that ®p is fully faithful, so Mukai in his original
approach had to circumvent this. The techniques employed by Mukai (the full
machinery of base change is used) are important in other situations too, so
the reader might want to go back to [79] to see how it works without invoking
Proposition 7.1.

Exercise 9.21 Use Corollary 5.23 and the techniques of the last proof to
conclude that for any a € A and a € A one has

) (Pr@( ))odp~dpots:DP(A) — DP(A)

i) ®po(Py®( ) ~t:odp:DP(A) — DP(A).
See [79].

Remark 9.22 i) Note that if A % A, which happens quite frequently, the
proposition yields derived equivalent varieties which are not isomorphic and not
even birational.

ii) For elliptic curves the fact that the derived categories are equivalent is of
course trivial, as the dual variety of an elliptic curve F is isomorphic to E.

However, the functor ®p : DP(E)—=DP(E) is nevertheless of considerable
interest as it relates torsion sheaves, e.g. k(a), to vector bundles (the line bundles
Ps). This can be used to give a new interpretation of certain results on vector
bundles on elliptic curves. See [96, Ch.14].

The cohomological Fourier-Mukai transform
of . H*(A,Q) — H*(A,Q)
can be compared with the natural isomorphism given by Poincaré duality.
More precisely, since ®% : H"(A,Q)— H*(A,Q) is given by ch(P) =
exp(c1(P)) € H*(A x A,Q) and ¢1(P)* € HF(A,Z) @ H’“(A7 7Z), one finds that

S (H"(4,Q)) C H"(4,Q).
On the other hand, integral Poincaré duality yields canonical isomorphisms

PD, : H"(A,Z) —= H?~"(A,Z)* —> H2%"(A,7).
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Lemma 9.23 Poincaré duality and the Fourier—Mukai transform with kernel
P compare via

(bg _ (_1)n(n2+1) +g . PDn . H7L<A, Q) HN -EI'Q.(]—’I’L(A\7 Q) — HQQ—R(A,Q)*'

Proof The easiest way to see this is by introducing a basis {e;} of H*(A,Z)
and to express all homomorphisms involved in this basis.

Let J=(j1 <...<jn)and I = (i1 < ... <idgg—p) with TUJ ={1,...,2¢}.
We shall write e; instead of ej, A ... Ae;j,, etc. Then PD,(es) = € - e}, where
the sign e can be determined by e = ¢ - ej(er) = [es Aey.

In order to express ®X (e;), one uses formula (9.6)

APy = 3 (~)V 2l (e A Aen ) AE, AL AC).

<. <Ly,
Hence,
5 (e1) = Ol (pyo—n f(2g—ny(€)
= (71)(297")(297”71)/2 (/(GJ A 6])) ey.
The remaining sign verification is left to the reader. O

Corollary 9.24 The cohomological Fourier—Mukai transform associated to the
Poincaré bundle defines an isomorphism of integral(!) cohomology

OH . H*(A,Z) — H*(A,7).
Moreover, the square

. L2 o5 .
H"(A,Z) — H*""(A,Z) — H"(A,Z)

is given by multiplication with (—1)"79.

Proof The first assertion follows from the above comparison with Poincaré
duality, which is defined over the integers.
The second assertion could either be seen as a corollary to Proposition 9.19,

as 1* o [—g| acts as (—1)"9 on H"(A,Z), or directly proved by the sign check
(_1)n(n+1)/2+g+(2g—n)(2g—n+1)/2+g — (_1)n+g. 0O

9.3 Sly-action

All the results of this sections are again due to Mukai.
It has been mentioned that a general Fourier—Mukai transform is not com-
patible with tensor product and it is easy to check that the Fourier—-Mukai
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transform with kernel the Poincaré bundle on A x A is no exception. However,
there is another multiplicative structure on the derived category of an abelian
variety and the Fourier-Mukai transform ®p relates it to the tensor product.

Definition 9.25 Let A be an abelian variety. Then one defines the convolution
as the bifunctor

x: DP(A) x DP(A) ——= DP(A) as F*«E°:=m (F KE®).
Note that the convolution is the composition of the right derived functor Rm.

and the bifunctor X, the latter of which descends from the homotopy categories
without deriving.

Exercise 9.26 Let f: B—= A be a homomorphism of abelian varieties. Show

that f*F® x f*E® ~ f*(F* % E*).

Lemma 9.27 Let ®p : DP(A)—=DP(A) be the Fourier-Mukai functor with
kernel P. Then there exist functorial isomorphisms

Op(F**E®) ~Pp(F°) @ Op(E®)
and
Pp(F*@E%) = Op(F°) x &p(£°)[g].

Proof We use the following commutative diagram:

~ q ~ P
A Ax A A
m]\ O (m><1dA)T
~ ~ 12 ~ —~ T3
Ax A (AxA)x A A
™13 ™23
Ax A O Ax A
T F* QP *E QP
p p
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Then one works through the following series of functorial isomorphisms

Dp(F*+E®%) =pu ("M (F*RE®) @ P)
~ (M X 1d4)«75(F* K E®) @ P) (use flat base change)
~ p. (i x 1dA) (5 (F* R E®) @ (7 x ida)*(P))

(7 x ida)«(115(q" F* @ P) @ mh3(q"E* @ P))

(use (M x1id4)*P ~ 7jsP @ w33 P)
~ p.m3, (Mi5(¢* F* @ P) @ m35(¢*E® @ P))
(use po(m,ida) =m3 =poms)

(@ F* @ P @13, m33(¢"E* @ P))
P« F* @P Q@ p*p.(¢"E® ® P)) (use flat base change)
P (*F* @ P) @ pu(q*E® @ P).

This proves the first assertion. The second one is deduced from it by applying
®p : DP(A) —=DP(A) to both sides.

Indeed, if we set G® := ®p(F*) and H® := Pp(£°®) and apply Proposition
9.19, then

~ p,(m

1R

1

1

Pp(G° @H®) =~ Op(Dp(F°) © Pp(£°))
~ B (Dp(F" 5 E7))
7 (F €)=
Since ®p(G®) ~ 1*F*[—g] by Proposition 9.19 and similarly &5 (H®) ~ *E*[—g],
one obtains
Op(G° @H®) = 1" (L"®p(G%)[g] * " Pp(H?)[g]) [=g] =~ (Pp(G°) * ©p(H*)) [g],

where we use m., 0 (¢ X 1)* = 1* om,. As all G* and H* in DP(A) are isomorphic
to some object of the form ®p(F*), respectively ®p(E®), the second assertion
follows. (We actually prove the assertion for ®p : Db(A)—>Db(;1\), but the
situation is symmetric.) m|

Next let M be a non-degenerate line bundle on A, i.e. a line bundle such that
oy A— Ais an isogeny. Due to Lemma 9.16 this is the case if M is ample. The

convolution with M can be expressed in terms of the Fourier-Mukai transform
®p : DP(A) —=DP(A) as follows.

Lemma 9.28 There exists a functorial isomorphism
FosM~MepyuPp(L"F* @ M).

Proof To prove the assertion, one introduces the morphisms £ : AXxA—= Ax A,
(a,b)—(a,a+b) and d: A x A—= A, (a,b)—>b — a. They satisfy

dolé=my, mo&=m, and mgo0& =m.
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Using this (and the obvious £,.£* = id) one computes
Fosx M ~m (niF* QmsM) ~m, (§"niF* @ &d"M)
~ M Ll (M F Qd" M) ~ mo, (7] F* @ d* M).
On the other hand, m*M ~ (M X M) ® (1 X pa)*P by formula (9.8) and
hence d*M ~ (VM X M) ® (v X ppr)*P. Thus,
Fosx M~ mo, (miF @ (MR M)® (¢ X pam) P)
~ Mo, (M (M @ F*) @ msM @ (L X ppr)*P)
~ mau((0 % par)" (LM @ " F*) @ P)) @ M
~ Py (T (M @ U F*) @ P) @ M.
For the last isomorphism we use g, o (¢ X @pr)* = ma, 0 (¢ x id)* o (id X ppr)*,

oy = Tay © (¢ X id)., and ma, o (id X par)* = ¢4, o w2, (which follows from flat
base change). a

Let (A,L) be a principally polarized abelian variety. Identifying A with A
via the induced isomorphism ¢ : A"~ A one may consider the Fourier—Mukai

transform ®p as an autoequivalence ® : DP(A) —=DP(A). To be precise, we let
® be the Fourier-Mukai transform with kernel (id x ¢, )*P or, equivalently

® = ¢} 0 dp : DP(A) — DP(A).

Lemma 9.29 Under these assumptions ®(L) ~ L*.

Proof By the definition of ¢ (see formula (9.8)) one has (id X ¢)*P ~ m*L ®
(L*X L*). Hence, (L) ~ p.(¢*L@m*L @ (L* KX L*)) ~ p.(m*L) ® L*. Thus, it
suffices to show that p,m*L ~ O.

Since (A, L) is a principally polarized abelian variety, one has a unique (up
to scaling) non-trivial section s : O — L (see Definition 9.18). The pull-back
yields a section m*s : Oax 4 —>=m*L. Its restriction to any fibre p~!(a) ~ A is
a non-trivial section m*s|AX{a} 04—t L.

Since t} L is again a principal polarization, the section is unique and, therefore,
induces a bijection H%(p~!(a), O) ~ H°(p~'(a), m*L|,-1(,). Hence, O ~ p,O ~
R°p.m* L. This is enough, as the higher cohomology groups of t* L are all trivial
and hence R'p,m*L =0 for i > 0. O

Proposition 9.30 (Mukai) Let (A4, L) be a principally polarized abelian vari-
ety. If ® : DP(A)—=DP(A) denotes the Fourier-Mukai functor with kernel
(id x @r)*P, then

P ~[-29] and (L@ ( )o®)®~[—g]
Proof We start out with the following identity
2 >~ *[—g] (9.9)
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which follows from Proposition 9.19 and the commutativity of the diagram

The latter can be seen by writing down the kernels given by (¢, xid). P, respect-
ively (id x ¢r,).P, where P is considered as a line bundle on A x A in the first and
as a line bundle on Ax A in the second case. (Remember that the Poincaré bundle
is universal in both directions.) The first assertion now follows immediately.

Let F* € DP(A). Then, invoking Lemmas 9.27, 9.29, Exercise 9.26, and
Proposition 9.19 one obtains

(L ®P(F*))

~ 1 Pp(L® L ®p(F*))

2 1 (@p(L) * P} Op(F*))[g]

" 01 0p(L) * 91 Ppel Op(F7)g] = B(L) 5 2(F)]

9.29 (9.9)

=L 0F(F)[g)

L@t op(F @ LY).

Then applying ® once more yields
(L& ®(L®D(F*)))
~ B(p}. Bp(F* © L7))

L+ Fo=gllg] ~ L* % " F*

LB p(F @ LY)) ~ DA B(F* ® L*))

9.11 ~x ° *
~ QL PpR(F* @ L") = " ep®(F*® L")

ULt p®(F @ L) ~ S OX(F @ LY)
9.9
(R @ L) gl = F* @ L'[~g).
O

Remark 9.31 One interpretation of the above results is that modulo shifts, the
elements of the group Sly(Z) act naturally as autoequivalences on the derived cat-
egory DP(A) of a principally polarized abelian variety. Indeed, Slx(Z) is generated
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by the two matrices

0 -1 1 0
S_(l O>andT—<_11)
with the generating relations S* =1 and (T o S)® = 1. In this picture

S=<=—>20

T <— L®()

In Mukai’s original paper ® and L ® ( ) are rather set into correspondence with

. 1 . 1 .
the matrices ( 0 ), respectively . The one given above turns

1
-1 0 0 1
out to fit better in the context of the discussion of Section 9.5, where we shall
describe the full group of autoequivalences of an arbitrary abelian variety.

Exercise 9.32 Give a direct proof of the induced cohomological identities
(L@ ( )" od")? = (-1)9 and (®¥)* = id, e.g. for g = 1. The more adven-
turous reader, not afraid of signs (e.g. in Lemma 9.23), may attack the general
case.

9.4 Derived equivalences of abelian varieties

The aim of this section and the next one is to give a geometric interpretation of
any derived equivalence ® : DP(A) "~ DP(B) of two abelian varieties A and B.

This will be done by associating to ® a derived equivalence of A x A and B x B ,
which, as it turns out, is in fact given by an isomorphism A x A ~ B x B. The
same approach also allows a full description of the group of autoequivalences.
The construction is quite involved and somewhat miraculous, but it leads to
a complete understanding of the situation. As will become clear immediately,
almost nothing of what will be said here has a chance to generalize to other
types of varieties. Essentially all techniques used in this section are due to Orlov
and Polishchuk.

Let us begin with a closer examination of two very special equivalences. Firstly,
consider the automorphism

,u:AXA;)AXA, (al,a2)|—>(a1—|—a2,a2)
defined for any abelian variety A. Secondly, we use the Poincaré bundle P on

A x A to define the equivalences ®p : DP(A) ~~DP(A) and id x ®p : DP(A x
A) ~DP(A x A).
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Examples 9.33 Let us try to understand the composition
(15 0 (id x ®p) : DP(A x A) — DP(A x A)

by computing the image of k(a) X k(«), where a € A and o € A corresponds to
the line bundle L := P, on A.

By definition, (id x ®p)(k(a)RKk(a)) ~ k(a) X L and p,(k(a) X L) = p.(ia. L),
where i, : A—>= A X A, '+ (a,a’). Since the image of the composition p o i,
which is a closed embedding, is just the graph I'_, :=T';__ of t_,, one obtains
pi(k(a) ML)~ (OXRL)® Or_,.

Therefore,

1. (id x ®p)(k(a) R k(a)) ~ (OR L) ® Op_,.

This is an object in DP(A x A) and thus gives rise to a Fourier-Mukai transform
DP(A) —=DP(A). Clearly, this is nothing but the composition (L ® () o t_ .

Let ®¢ : DP(A)=~DP(B) be a derived equivalence between two abelian
varieties given as a Fourier-Mukai transform with kernel £ (which is uniquely
determined!). By general results (see Proposition 4.1) we know that A and B
are of the same dimension, say g. Also recall that Eg = £V[g] (as the canon-
ical bundle of an abelian variety is trivial) and that the induced Fourier-Mukai
transform ®¢, : DP(B) —~~DP(A) is quasi-inverse to ®¢.

We will, however, be more interested in the induced Fourier—-Mukai transform
in the opposite direction ®g, : DP(A) =~ DP(B), which is also an equivalence
(see the proof of Proposition 6.1 or Remark 7.7), and in the product equivalence
Pg x Bg,, : DP(A x A) =D (B x B) (cf. Exercise 5.20). Note that

Pep Pe

D"(A) —— D"(B) — D"(4)

is isomorphic to the identity.

Definition 9.34 7To the equivalence ®¢ one associates the equivalence

Fe :DP(A x A) —> D(B x B)
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given as the composition

Fe

-~

DP(A x A) DP(B x B)
idx®p , (idx®p )"
b b
D°(Ax A) D*(B x B)
HA o
DP(A x A) DP(B x B).
@gX@gR

Remark 9.35 The key idea of everything that follows is that by passing
from ®g x &g, : DP(A x A) “=DP(B x B) to Fg:DP(Ax A)=~DP(B x B)
the situation becomes, for some mysterious reason, more geometric.

Lemma 9.36 The construction ®¢+——= Fg¢ is compatible with composition, i.e.
if ®g : DP(A) ==DP(C) is the composition of

®e : DP(A) — D*(B) and &g :D"(B) — DP(C)

then Fg ~ Fro Fg¢.
Proof By the very construction of F', the assertion follows immediately from
(Pr X ©x) 0 (Pg X Pg) = Pg x Pg,. The latter is a consequence of the
assumption ®g = & o &g and Remark 5.11. O

As Fg =id for ®¢ = id, the lemma yields in particular the following
Corollary 9.37 The map

Aut(DP(A)) — Aut(D*(A x A)), ®¢ —> Fs¢

is a group homomorphism. O
Examples 9.38 In the following we compute F¢ explicitly in a few important

cases.
i) Suppose

e =M®( ):DP(A) — DP(A)



212 Abelian varieties

for some line bundle M on A. Thus, £ ~ A,M. Clearly, the inverse functor is
M* @ () and hence Eg ~ A, (M*). Thus, ®¢ x Pg,, : DP(A x A) "=DP(A x A)
is just (MR M*) @ ().

In order to describe F' := F¢ in this case, we shall study F(k(a) X k(«)) for

all closed points (a,a) € A x A. It has been shown (see Example 9.33) that
i (id X @) (k(a) R k(a)) ~ (OK L) ® Or_, (which is the Fourier—-Mukai kernel
for (L ® ()) ot_qs«). Here, L = P, as before. Hence,

(Pg X Pgy ) (pa(id x p)(k(a) M k(a))) = (MK (M* @ L)) @ Or_,.

Indeed, by Exercise 5.13 (®g X ®g,)((O KR L) @ Or_,) is the kernel of the
equivalence F*—=(M* @ L) @ t_q.(M @ F*).

If M € Pic’(A), then to, M ~ M and hence (M ®M*)® Op_, ~ Op_,. Thus
in this case one immediately finds F(k(a) K k(«)) = k(a) K k(«) for all closed
points (a,a) € A x A.

Now, by Corollary 5.23 we conclude that under the hypothesis that M €
Pic’(A) the equivalence F is isomorphic to N ® (') for some line bundle N on

AxA. Thus, all that is needed to get a complete description of F' is to determine
this line bundle N, which is N ~ F(O, 7).
Using p.P ~ k(e)[—g] (see the proof of Proposition 9.19), one computes first

(id X p)(0) ~ OXR Pp(0) ~ O K k(e)[—g].
Next, 1. (O K k(e)[—g]) ~ O K k(e)[—g] and
(Pe X ey ) (O WE(e)[—g]) ~ M K k(e)[—g]-
Hence,
F(O) = (id x &)~} (4 (OB k(e)[~g])) ~ M O.
Therefore, if M € Pic®(A), then the equivalence F : DP(A x A) ~~DP(A x A)
associated to M ® () : DP(A) =~DP(A) is isomorphic to (M X O) ® ().

We also mention here that for M ¢ Pic’(A) the induced equivalence is still of
the form F = (N ® ( )) o f. only f is not the identity. See Example 9.40.

ii) In the second example we consider the case of the autoequivalence
De = ta, : DP(A) — DP(A)

for some point ag € A. In particular, its kernel is & ~ Or, and also g =~
Or,,. We follow the same strategy as above and try to compute the image

F(k(a) ® k(a)) for any closed point (a,o) € A x A.
Using again Example 9.33 and t,,.L ~ L for L = P, € Pic’(A), one finds
(B X By ) (1 (i x Bp)(E(a) B () ~ (fage X taye)(OR L) @ OF )
~ (O X L) ® OF,(f
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So, once more F sends k(a) X k(«) to itself and, therefore F ~ N ® () for
some line bundle N on A x A. To compute N, one first shows

(fags X tags) (s (id X @p)(0)) = (tags X tags)(O W k(e)[—g])
~ O X k(ap)[—g].

Since p* (O W k(ao)[—g]) ~ O W k(ao)[—g] and p(Lf) ~ k(ao)[—g], where Lo is
the line bundle on A corresponding to ag € A (use the same arguments as in the
proof of Proposition 9.19), one finds F(O) ~ OK L}, .

Therefore, the equivalence F : DP(A x A\)%Db(A X A\) induced by
taox : DP(A) == DP(A) is given by the tensor product with O K L, where
Lo = P ;o) 4 € Pic’(A).

iii) Corollary 9.37 allows to combine i) and ii) as follows. Let (a,a) € A x A
and

®(g0) = (L& () 0tar : DP(A) ——= DP(A),

where L = P,. The induced equivalence F' is given by

-~

Floay~LRL;®( ):DP(Ax A) — DP(A x A),

where Ly = P|{a}x2' In particular, its kernel is given by A, (L& L§) where A is
the diagonal embedding of A x A.

iv) Consider a simple shift functor D?(A4) -~ DP(A), F*+= F*[n]. Then the
induced F : DP(A x A) -~ DP(A x A) is isomorphic to the identity. This follows
from (Oa[n])r ~ Oal[—n].

v) For completeness sake we also consider the case of the equivalence
®p : DP(A) — DP(A)

given by the Poincaré bundle. It is however much easier to view this as a con-
sequence of the general results that will be proved below, so this will become
Exercise 9.52. At any rate, the result is that F' is given as (P ® ( )) o fpu,
with fp: Ax A A X A, (a,a)F(—a,a). (Note for the record that P ¢
Pic’(A x A).)

In all examples, we observed that Fg¢ sends closed points to closed points and
is therefore given, up to a twist by a line bundle, by an automorphism (see
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Corollary 5.23). In fact, the automorphism in the examples i)—iv) was always the
identity. More generally one has

Proposition 9.39 (Orlov) Let ®¢ : D(A)-"-DP(B) be an equivalence.

.

Then the associated equivalence Fg : DP(A x A) =~ DP(B x B\) is of the form
Fe~(Ne®())o fe.

with Ng € Pic(B x E) and fe : A X A Bx B an isomorphism of abelian
varieties. See [93].

Proof The proof is split into three steps.

i) In the first step we show Fe(k(e) X k(é)) ~ k(e) X k(é). By Example 9.33
we have p,(id x ®p)(k(e) K k(é)) =~ Oa,. Let G := (Pg x Pg,)(Oa,). Then
®g : DP(B) —DP(B) is isomorphic to the composition

ot Po, , =id Dep

DP(B) — > DY(4) ——— > DP(4) —> D"(B)

(see Exercise 5.13). Hence, ®¢ = id and, therefore, G = Oa . This is enough to
conclude Fg(k(e) K Ek(é)) ~ k(e) K k(é).

ii) Here we just recall a very general fact (see Corollary 6.14). If an equivalence
® : DP(X) =-DP(Y) sends a closed point 2o € X to a closed point yy € Y,
ie. ®(k(xo)) ~ k(yo), then there exists an open neighbourhood z¢g € U C X
such that for any closed point = € U there exists a closed point y € Y with
D(k(2)) = k(y).

iii) In this final step we show that F sends closed points to closed points.
For this, we use the existence of the Zariski open subset (e,é) € U C A x A
as in ii). Note that any other point (a,a) € A x A can be written as (a,a) =
(a1,0a1) + (a2, az) with (a;, ;) € U. (This is a general fact for open non-empty
subsets U of an abelian variety C. If x € C' \ U, then the image of the open
immersion ¢, : t(U)—=C meets U. Hence x — y; = yo for certain y1,y2 € U.)
By definition of U C A x A, there exist points (b, 3;) € B x B, i = 1,2, with
Fe(k(a;) X k(ay)) = k(b;) K k(5;). We denote the line bundles corresponding to
ﬁi, 1= 1,2, by Mz

Then define

G:=(Pg X Py ) (1, (id x Pp, ) (k(a) W k(a)))
~ ((I)g X @gR)((O X L) X OF,a)-

As before L := P, which can now be written as L ~ L1 ® Ly with L; = P|ax{a,}-
Similarly, we let M; € Pic(B) correspond to (3; € B.

The induced Fourier-Mukai transform ®g : DP(B) —DP(B) is isomorphic to
the composition

De (L®())ot—as ey
DY(B) — DP(A) D’(4) —> DY(B)
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(see Exercise 5.13). Hence,

Bg = ey 0 (L1 ® ()0 t_aye 0 (La® () 0t_gye 0D
=g 0(L1®@()) ot geoPeoPgo(La®()) ot g0 Ps
= (M ()0 topye 0 (Ma® () 0ty
= (M1 ® M2) @ () 0t b, b
(Don’t get confused with the directions of the Fourier-Mukai functor. Write down

the above diagram to make sure, e.g. ®¢ means ®¢ : DP(B) —=DP(A4).)
This is enough to conclude

Fg(k‘(a) X k‘(Oé)) = k(bl + b2) X k‘(ﬁl + ﬁg)

Therefore, Fg is up to twist by a line bundle Ng on B x B induced by an
isomorphism fg : A x A=~ B x B. In fact, the above calculation indeed shows
that fe respects the group structure. |

Examples 9.40 Coming back to Example 9.38, i) one finds that for M ¢&
PicO(A) the induced Fa,p = (fa, v, Na,m) satisfies fa, p # id.

Exercise 9.41 Consider the composition ®g = ®¢ o & £ of two equivalences
®r:DP(A) —> DP(B) and &g :DP(B) — DP(0).
Show that for the induced (N, fe), (Ng, fe), and (Ng, fg) one has
fo = feofr and Ng~ Ne¢® fe.Ng.
Here are a few immediate consequences of the proposition. The first one

roughly says that the number of Fourier—-Mukai partners of an abelian variety is
finite.

Corollary 9.42 To any abelian variety A there exist, up to isomorphisms, only
a finite number of derived equivalent abelian varieties B.

Proof If B is an abelian variety with D?(A) ~ DP(B), then A x A ~ B x B.
In particular, any such abelian variety B is a direct factor of A x A. A standard
argument shows that any abelian variety has, up to the action of automorphisms,
only a finite number of direct factors (see [78, V, 18.7]). O
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The second one is a generalization of Corollary 9.24.

Corollary 9.43 Let ®¢ : D?(A) =~DP(B) be a derived equivalence of abelian
varieties. Then the induced cohomological Fourier—-Mukai transform defines an
isomorphism of the integral(!) cohomology

®H . H*(A,Z) —— H*(B,Z).

Proof Imitating what has been said about the powers ¢ (P)", one first observes
that the Chern character ch(L) of a line bundle L on an abelian variety is always
integral. R R

Thus, the induced equivalence Fg : DP(A x A)-"~DP(B x B), which is
a composition of fg, and the tensor product with Ng, yields an integral
isomorphism

FH . H*(Ax A,7) — H*(B x B, 7).

Using Corollary 9.24 and the diagram in Definition 9.34 that defines Fg¢, this
implies that also

. =0H @l  H*(Ax A,Z) — H*(B x B,Z),

which clearly suffices to conclude. o

The construction of the morphism f¢ associated to any equivalence ®¢ seems
rather mysterious. Here is another view of it, which might help to understand it.
We shall use the notation

~

Dg0) = (L& ( ))ote. : D’(A) —— DP(A)
for a closed point (a,a) € A x A and similarly
® (3,4 : DP(B) —— D(B)

for a closed point (b,3) € B x B. The induced equivalences F(, ) have been
computed in Examples 9.38.

Corollary 9.44 Suppose ®g : DP(A) "-DP(B) is an equivalence and the
induced isomorphism is fe: Ax A">B x B. Then fe(a,a) = (b,3) if and
only if

D(s.5) 0 Be = B 0 Dy ) : D°(4) —— DP(B)
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Proof Due to Example 9.33, p. o (id x ®p) sends a closed point (a,«) to
(ORL)® Or_,. A similar calculation applies to (b, 3).
Thus, Fe(k(a,«)) ~ k(b, B) (or, equivalently fe(a,a) = (b,3)) if and only if

(B x Dg, J(ORL) @ Op_.) ~ (OR M) Op_,, (9.10)

where M = Pg. In order to apply Exercise 5.13, we swap the two factors in
(9.10) and rewrite it as

(Pey x ) (LR O) @ Or,) ~ (MEO)® Or,. (9.11)

Since @ (4,4 is the Fourier-Mukai transform with kernel (LXO)®Or, , Exercise
5.13 now says that (9.11) is equivalent to the commutativity of

Py,
D"(A) D(B)
P (a,0) 2,0
DP(A) DP(B).
de
With &g ~ <I>gl this is just saying @, ) 0 Pe ~ Pg 0 P4 ). a

The following digression shows that behind Proposition 9.39 there is a general
principle. In some sense, to be made precise below, Proposition 9.39 holds for
arbitrary projective varieties. The following remarks sketch the principal ideas
of an unpublished result of R. Rouquier.

Suppose

F :DP(X) — DP(Y)

is an equivalence. Clearly, F' induces an isomorphism between the groups of
autoequivalences

Aut(D*(X)) —— Aut(D*(Y)), & —> F*® = FodoF 1,
Equivalently, this is given by the following diagram

F71

D(X) D*(Y)
[ \L i F*®
DP(X) DP(Y).



218 Abelian varieties

Thinking of F' as a Fourier—-Mukai transform ®¢, the map ®xr+—=F*®r = F o
®x o F~! is on the level of Fourier-Mukai kernels described by

R —> F*R = (®g, x Bg)(R).

Here, (®g, x ®¢) : DP(X x X)—=DP(Y x Y) is the Fourier—Mukai transform
with kernel &g K E € DP((X x Y) x (X x Y)). See Exercise 5.13.

We will be interested in the ‘neighbourhood’ of the identity id
DP(X) -=~DP(X). To this end we consider the semi-direct product Aut(X) x
Pic(X) as a subgroup of Aut(DP(X)) by associating to (¢, L) € Aut(X)x Pic(X)
the equivalence @, 1) := (L ® ( )) o @«, the kernel of which is of the form
(id x )L € DP(X x X).

Clearly, F*® 4y 0) =~ P(idy,0y)- In other words, F*Op =~ Oa. In particular,
the image of the kernel defining id = ®(j4,,0) is isomorphic to a line bundle con-
centrated on the graph of an automorphism of Y. This then will be true for small
deformations of (idx, ©O), i.e. for any (¢, L) contained in a small neighbourhood
of Aut(X) x Pic(X), which is an algebraic group, the image F*®, 1y will be
again of the form @y 5py with (¢, M) € Aut(Y') x Pic(Y).

As any open neighbourhood of the identity idx € Aut(X) x Pic(X) generates
the connected component Aut®(X) x Pic’(X), the map &+ F*® induces a map

Aut’(X) x Pic®(X) —— Aut’(Y) x Pic’(Y).

Using the same argument for the inverse F~!, one shows that it is in fact an
isomorphism.

These are the main ideas to prove the following result, whose complete proof
needs to address a few more technical details.
Proposition 9.45 (Rouquier) Any equivalence F : DP(X)-"-DP(Y)
induces an isomorphism of algebraic groups

F*: Aut®(X) x Pic®(X) — Aut’(Y) x Pic®(Y). (9.12)

For abelian varieties A and B as considered earlier, this is exactly what is
expressed by Proposition 9.39. Indeed, one has A ~ AutO(A) via at—t,, and
A~ Pic’(A). As Corollary 9.44 shows, the isomorphism fg : A x A BxB

induced by any equivalence I := ®¢ : DP(A) "~ DP(B) is nothing but F*, i.e.

fe~ F*: Ax A= Aut®(A) x Pic®(4) — Aut®(B) x Pic’(B) = B x B.

One last remark on the general case, the isomorphism (9.12) can be seen as
the geometric realization of the isomorphism of the first Hochschild cohomology
(see the discussion on p. 140)

HHY(X)=H(X,7Tx)® H'(X,0x) ~ H (Y, Ty) ® H'(Y,0y) = HH'(Y)
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induced by the equivalence. Indeed, the tangent spaces of Aut(X) and Pic(X)
are nothing but H%(X, Tx), respectively H!(X, Ox).

Let us now pursue our discussion for abelian varieties. As we will show next,
this interpretation of fg provided by Corollary 9.44 will lead to a characterization
of all isomorphisms fg that might occur.

Any isomorphism f: A x A"~ B x B can be written as f = (?l ;2> and
3 Ja

one associates to it the isomorphism f: B x B> A4 x A

f = f}\l 7‘2:‘2 .
—f3 N
(Note that we tacitly use the isomorphisms A ~ A and B ~ E)

The following subgroup of isomorphisms A x A-"> B x B was independently
studied by Mukai and Polishchuk.

Definition 9.46 By U(Ax E, BXE) one denotes the subgroup of isomorphisms
f:AXxASBx B with f = f~1.

Corollary 9.47 The isomorphism fg : A X A" B x B associated to an equi-
valence ®g : DP(A) ~>DP(B) is contained in U(A x A, B x B).

Proof If we denote as before the autoequivalence of DP(A x 2) induced by
D (4,0) bY Fla,q), then Corollary 9.37 and Corollary 9.44 imply

Fe o Flaa) = Fie(aa) © Fe.- (9.13)

The closed point a € A corresponds to a line bundle Ly on Aanda € Atoa line
bundle L on A. Similarly, (b, 3) = fe(a,«) gives rise to (M, My) € Pic(B x B).
Thus, (9.13) reads (see Examples 9.38, iii))

(Ne®@( ))ofeso(LRLR () =(MRBM;@( ))o(Ne@( ))o fe.

or, equivalently, fe, (L X L§) ~ M X M. The latter translates to fg(@, -b) =
(o, —a) or further to fe(b, 3) = (a, ). As (b, 3) = fe(a, ), this proves fe = fz!
on all closed points which is enough. m|

The following result is originally due to Polishchuk. An alternative proof was
given by Orlov.

Proposition 9.48 (Orlov, Polishchuk) Consider two abelian varieties A
and B. Any f € U(A x A, B x B) is of the form [ = fe for some equivalence
®g : DP(A) 2-DP(B). See [93, 96].
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We refrain from giving any indications of the proof. However, looking at
Lemma 9.51 below one gets the impression that once f and an appropriate line
bundle N are given, a potential kernel £ can be constructed easily, well, at least
the modification £Y(ea,ep) ® E.

Orlov’s proof makes extensive use of semi-homogenous vector bundles on
abelian varieties. Polishchuk’s approach is explained in [96, Ch.15]. Both would
lead us too far astray.

The next corollary summarizes the discussion of this section and gives a com-
plete answer to the question of when two abelian varieties are derived equivalent.

Corollary 9.49 Two abelian varieties A and B define equivalent derived cat-
egories DP(A) and DP(B) if and only if there ewists an isomorphism f :
Ax A B x B with f = f~1:

D’(A) ~DP(B) <= U(Ax A,BxB)+wo.
The corollary can be rephrased in terms of Hodge structures of weight one. An

abelian variety A is determined by its weight-one Hodge structure on H'(A,Z).
This applies also to A x E, which corresponds to the induced weight-one Hodge
structure on H'(A x A,Z) = H'(A,Z) ® H'(A,Z)*.

Moreover, the lattice H'(A,Z) @ H'(A,Z)* comes with a natural quadratic
form given by the dual pairing:

qa((a,a)) :==2a(a).
Corollary 9.50 Two abelian varieties A and B are derived equivalent if and
only if there exists a Hodge isometry

FfiH'(Ax A,Z) — H'(B x B,Z).
See [41].

Proof It clearly suffices to show that the condition f being an isometry, i.e.
q5(f(a,a)) = qa((a,a)), is equivalent to the condition f = f~1.
After choosing a basis for H'(A,Z) and H'(B,Z), the quadratic forms ¢4 and

qp correspond to the matrix 01 . Thus, f = hof2 is an isometry if and
Lo f3 Jfa

BN (0 1\ (i fN_(0 1
i)\t 0)\fs fa 10/
The assertion follows immediately from the relations

ff:]?lv fzi:f/zlv f2t:_f27 and f?f:_f/;

only if

Note that ]?2 is actually defined as ]?2 :B—=A"s A, where the isomorphism
is given by the Poincaré bundle. Then use Remark 9.12. O
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In the remainder we will discuss yet another result of Orlov saying that any
derived equivalence between abelian varieties is a Fourier-Mukai transform with
a shifted sheaf as a Fourier—-Mukai kernel. This part is independent of the rest
of this section, but it will come in at a crucial step in the next one where we
build upon the above discussion to determine the group of autoequivalences of
the derived category of an abelian variety.

Let us start with the following technical result. We let ®¢ : D"(A) ">~ DP(B)
be an equivalence and Fg : DP(A x A) " DP(B x B) be the induced equivalence
as introduced above. Then Fg¢ can be described as a Fourier—-Mukai transform

P7(g), where T &) is a line bundle Ng on the graph of a certain automorphism
fe : Ax A Bx B.

Lemma 9.51 Ifn:AXx A x B x B—=A x B is the natural projection, then
Ke :=mI(E) ~E"(ea,ep) ®E.

Here, EV(ea,ep) = (ea,ep)*EY is the fibre of the complex EV in the origin.

Proof As F¢ has been introduced as a composition of a number of Fourier—
Mukai transforms, its kernel Z(£) can be described by the methods of Section
5.1 as a direct image of the tensor products R of the various kernels. Instead of
writing this out, let us try to explain this by the following picture.

We shall use I',, = {(a1,a2,a1 + az,a2)} and ', = {(b1 + b2, b2, b1, b2)}.

Or,, Or, .

(Ax A) x (Ax A) x (Ax A) x (B x B) x (Bx B) x (B x B)

Oa KP4 ENEx O K (id x £)*Psg]

lw
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The projection 7 can be decomposed as follows
(Ax A) x (Ax A) x (Ax A) x (Bx B) x (B x B) x (B x B)
i)
Ax (AxA)x (Ax A)x (BxB)x (BxB)xB
ii)
A X (Ax A) x (B x B) X B

iii)

A X B.

The direct image of R under i) yields

Or, Or,,

(A )x(AxA)x(AxA) x(BxB)x(BxB)x (B )

Oa R k(ea)[—g] ERER Oa B k(ep)[—gllg]

This follows from p,P = k(e)[—g] which has been shown in the proof of
Proposition 9.19.

Next use that the tensor product (Oa K k(ea)[—g]) ® Or, , is isomorphic to
the structure sheaf of the subvariety {(a,qa,¢,a,¢e) | a € A} shifted by [—g] and
similarly for the corresponding tensor product on the B-side.

Thus, the direct image under ii) yields

Of(aae)y =9 Ofen)

Ax (Ax A)x (BxB)xB

ENXEr
The direct image under the last projection iii) turns this into the desired
E®Er(ea,ep)[—gl =2 EREV(ea,epn). O
Exercise 9.52 Prove the description of fp and Np given in Example 9.38, v).
See also Exercise 9.21.

Proposition 9.53 (Orlov) Let ®¢ : DP(A)-"-DP(B) be an equivalence
between the derived categories of two abelian varieties. Then up to a shift €
is isomorphic to a sheaf. See [93].
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Proof After shifting £, we may assume that H°(£) # 0 and H(E) = 0 for
i > 0. We have to show that in this case £ is isomorphic to a sheaf. Let j
be minimal with H’(€) # 0. Then there exists a non-trivial homomorphism
HI(E)[—j] —= & and, therefore, also a non-trivial £¥ —=H’(€)V[j]. In order to
use this information, we have to study the dual £V.

Since £ is a sheaf if and only if ¢(, ;). is one, we may assume that (e, ep) €
supp(H¥(€Y)), which will come in handy later.

Suppose k is maximal with H*(EV) # 0. If H7(£)Y is concentrated in degree
> /¢, then k > ¢ — j. This can be seen by using the spectral sequence

B} = Eat?(H79(€),0) = HY(H9()") = ExtPH1(€,0) = HPH(EY),

By the previous lemma K¢ := m.Z(€) ~ £V (ea, ep)®E with Z(£) a line bundle
on the graph of fg. Denote the codimension of w(I's,) C A x B by d. Hence, £
is concentrated in codimension > d. This implies that 77 (£)V is concentrated in
degree > d (see the explanation on p. 78) and hence k > d — j.

The complex € is concentrated in [j,0] with H°(£) # 0 and £Y(ea,ep) is
concentrated in degree < k with non-trivial cohomology in degree k. Thus, K¢ =
EV(ea,ep) ® £ has non-trivial cohomology in degree k.

On the other hand, since the graph of f¢ is of dimension 2g, the fibres of
I'y, — A x B (which as a homomorphism of abelian varieties is smooth) have
all dimension d. In particular, K¢ as the direct image of a line bundle on I'y,
is concentrated in degree < d. Therefore, k < d and hence d > k > d — j. This
yields 7 > 0 and thus j = 0. |

Remark 9.54 The case of abelian varieties is very special. Already for K3
surfaces, a Fourier—Mukai kernel is, in general, not simply a sheaf. Examples for
(auto)equivalences with genuine complexes as Fourier-Mukai kernels have been
encountered already in Chapter 8.

9.5 Autoequivalences of abelian varieties

Orlov pushed the techniques further to give a complete description of the group
of all autoequivalences of DP(A) for any abelian variety A.

The results of the previous section applied to the case A = B show that the
map Aut(DP(A4)) —Aut(DP(A x A)), ®gr—= Fe, factorizes via Pic(A4 x A) x
Aut(Ax E) This is the map ®¢ = (Ng, fe). Indeed, the composition P¢odP £ is
mapped to (Ne ® fe Nz, fe o fr) (see Exercise 9.41). In particular, the further
projection to fg¢ is indeed a group homomorphism.

Proposition 9.55 (Orlov) The kernel of the natural map
Aut(DP(A)) — Aut(A x A) , g —> fe

is isomorphic to the group Z & (A X 2) generated by shifts [n], translations t,,,
and tensor products L @ () with L € Pic’(A). See [93].
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Proof In Examples 9.38 we have seen that shifts, translations and tensor
products with L € Pic’(A) all induce the identity fe. So, all are contained
in the kernel.

Suppose now that fg is the identity. In other words, Fg is the tensor product
with a line bundle Ng on A x A which will be considered as a line bundle on the
diagonal A, 7 C A x Ax AxA. Therefore, K¢, which is the direct image of
this line bundle on the diagonal, has support in A 4. By Lemma 9.51 the same
holds for £V(e,e) ® £.

Suppose that £V (e, e) # 0. Then £ is supported on A 4. In other words, ®¢ =
E ® () for some shifted coherent sheaf E on A (cf. Proposition 9.53). A closer
inspection, e.g. testing ®¢ on points, shows that £ must be a shifted line bundle

As was explained in Example 9.40, M ® () yields the identity fe = id if and
only if M € Pic’(A).

In order to ensure that £Y(e,e) # 0, we just translate. Indeed, if £Y(a,b) # 0
and @rv :=1t_4, 0 Pgv 0y, then FV(e,e) # 0. m|

Remark 9.56 Previously, we have studied the homomorphism
g > Fg = (Ng, fe) € Pic(A x A) x Aut(A x A).
In general, Ng¢ is not of degree zero. The proposition however shows that
{Fe} — Aut(A x A),
is injective, where Fg is the image of Fg in H?%(A X ,Z) X Aut(AAx E) under the
projection induced by ¢; : Pic(A x A) —=Pic(A x A)/Pic®(A x A) ¢ H*(Ax A).

Together with Proposition 9.48 and using the short-hand U(Ax A) for U(A x
A A x A) one obtains a complete description of the group of autoequivalences
of an abelian variety.

Corollary 9.57 The map e+ fe¢ induces a short exact sequence

0 — Z& (Ax A) — Aut(DP(4)) — U(A x A) — 1.
O

The proposition also shows that the subgroup Z & (A4 x A\) C Aut(DP(A)) is
actually normal. In particular, if we denote as before the equivalence associated
to a closed point (a,a) € A x A by ®(, 4), then for any other equivalence ®¢ €
Aut(DP(A)) the normalizer ®¢ o ®(, o) 0 Pz is again of the form @, 5) up to
shift. This leads to the following alternative description of the automorphism fe¢,
which is just a repetition of Corollary 9.44 in the case of autoequivalences.
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Corollary 9.58 Up to shift one has
de o (I)(a,a) o ‘I)gl ~ ‘I)fg(a,a)
for any closed point (a,a) € A % A.

Proof Indeed, Corollary 9.37 implies

Fg (¢] F(a@) = F(b,ﬁ) o Fg (9.14)

for some (b, 3). The closed point a € A corresponds to a line bundle Lg on A and
a € Atoaline bundle L on A. Similarly, (b, §) gives rise to (M, My) € Pic(BxB).
Thus, (9.14) reads (see Examples 9.38, iii))

(Ne@( ))ofeso(LRWLo@( ) =(MRM;@( ))o(Ne@( ))o fe.

~

or, equivalently, fe, (L X Lg) ~ M X Mg. The latter translates to f(3,—b) =
(a,—a) or further to f(b,3) = (a,a). Using f = f~! yields the assertion
fla,a) = (b, B). O

Let us try to clarify the relation between Mukai’s Sly(Z)-action and the above
description of Aut(DP(A)) in the case of a principally polarized abelian variety
(A7 @L) .

We invoke Example 9.38, v) to see that for ® = % o ®p € Aut(DP(A)) one
has

0 -1

® 3f:<10

): Ax A — Ax A

The other generator of the Sly(Z)-action in Section 9.3 is given by the auto-
equivalence L ® (). Using Corollary 9.58 one easily computes that for this
autoequivalence one has

Lo()— f :(_11 (1)> Ax A —> AxA.

Exercise 9.59 Prove this.

This description fits nicely with the one given in Remark 9.31. In order to
incorporate the shift functor one introduces a Z-cover of Sls.

Definition 9.60 Denote by S~12 (Z) the group that is generated by three elements
Ay, As, and t satisfying the relations

(Ap-Ag)> =19, A3 =12, and A;-t=t-A,.

(For a discussion of the group §12, especially from the symplectic point of view,
in the case g = 1 see [106].)
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Clearly, setting t = 1, Ay = (_11 (1))7 and As = ((1) 01> defines a surjec-

tion Sly(Z)—>>Sly(Z). On the other hand, Mukai’s results of Section 9.3 just
show that sending t+—=[—1], Ay+—=L ® (), and As+>® defines a group

homomorphism Sly(Z) —= Aut(DP(A)).
Eventually one obtains a diagram

0 —=Z®(Ax A —> (Ax A) xSly(Z) — Sh(Z) —— 1

| |

00— Z® (Ax A) — Aut(DP(A)) —— U(A x A) — 1.

Here, the inclusion Sly(Z) C U(Ax A) C Aut(A x A) is the natural one, which
also explains the semi-direct product (A x A) x Sly(Z) by adding that ¢ acts as

the identity on A x A.
Note that for a generic principally polarized abelian variety the inclusion
Sla(Z) CU(A x A) C Aut(A x A) is an equality.

We conclude this section with a few comments on the relation between the
two representations of the group of autoequivalences encountered so far. In this
chapter, we have studied in length

v: Awt(DP(X)) —= U(Ax A), &g —> fe,
whereas in the general context we were looking at
p: Aut(DP(4)) —— GI(H*(A,Z)), &g +—— .
Although U(A x //1\) can be interpreted as a subgroup of
al (Hl(A, 7)® HY(A, Z)) ~ Gl (Hl(A, Z)® H>1(4, Z))

these two representations have quite a different flavour. A detailed discussion,
involving Spin-representation, can be found in [41]. We just mention the following
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Corollary 9.61 There exists a homomorphism A : Im(p) —U (A x E) giving
rise to the commutative diagram

Im(p) > GI(H*(A,Z)).

Its kernel has order two and is spanned by the image of the shift functor.

Proof In order to prove the existence of A one simply shows that ®% = id
implies fg¢ = id. This follows from the cohomological version of the diagram in
Definition 9.34. Indeed, if ®¥ = id, then also @gR = id and thus Ff’ = id. The
latter suffices to conclude fg = id.

By Proposition 9.55 any autoequivalence ®¢ in the kernel of v is contained in
7Z.® (A x A), i.e. up to shift it is of the form @, ). It is straightforward to show
that the ®(, 4y act trivially on cohomology. As the shift functor F® = F*[1]
acts by a global sign, this proves the description of the kernel of A. |

Another way to view this result is in terms of the following diagram:

7./27.

—~ vy —~
0 —> Z @ (Ax A) — Aut(DP(A)) — U(Ax A) — 1

A

o

0 —= 22® (A x A) —> Aut(D*(A)) ——= Im(p) — 1

7./2Z.
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A, -configuration, 175
P™-object, 173
t-structure, 292

heart of, 292

abelian surface, 272, 276
abelian variety, 192
dual of, 196, 199
line bundle on, 197
polarized, 200
principally, 201, 207, 208
algebraic symplectic variety, 173, 245, 264
ample sequence, 59, 69, 101, 102, 110, 112
Appell-Humbert datum, 197
autoequivalence, 18, 99, 168
group of, 18, 173, 178, 218
for abelian variety, 211, 223
for Fano variety, 100
for K3 surface, 239, 295

base change, 85, 202, 206, 207, 268
Beilinson spectral sequence, 179, 181
blow-up, 147, 252
braid group, 175

action, 178

Calabi—Yau manifold, 150, 169, 170, 173,
179, 184, 289
canonical bundle, 67
(anti-)ample, 93, 95
under derived equivalence, 92, 149
nef
under derived equivalence, 146, 273
order of
under derived equivalence, 90, 273
under derived equivalence, 90
canonical cover, 162, 272, 276, 280
canonical ring
of line bundle, 151
of variety, 151
under derived equivalence, 137
Cartan—Eilenberg resolution, 56

category
abelian, 4
additive, 3

derived, 30, 36

bounded, 37
indecomposable, 66
of scheme, 62
equivalent, 2
homotopy, 31, 46
of injectives, 41
linear, 3
of complexes, 28
sub-
adapted, 48
admissible, 16, 25
orthogonal complement of, 16
thick, 42
triangulated, 16
triangulated, 11
decomposition of, 22
equivalence of, 18
indecomposable, 22
Chern character, 126
complex
acyclic, 29, 50
bounded, 37
cohomology of, 29
double, 54
filtration of total, 54
convolution, 205
crepant resolution, 271, 286

D-equivalence, 62, 150, 287, 291
decomposition, 22
semi-orthogonal, 25, 184, 256, 257, 260,
261
derived equivalence, 62
Fourier—-Mukai transform, 120
K3 surfaces, 234
of abelian varieties, 214, 215, 219
of curves, 99, 135, 170
of elliptic curves, 135, 179
of Fano varieties, 95
of surfaces, 272
direct image, 6, 44, 72, 74, 83, 86
higher, 72
K-theoretic, 124
distinguished triangle, 12
dual, 78
double, 84
of structure sheaf of subvariety, 89
dualizing functor, 87
dualizing sheaf, 67
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Enriques surface, 276, 280
equivalence, 2, 21, 22

exact, 18

of triangulated categories, 18
Euler number

of K3 surface, 229

under derived equivalence, 130, 273

exceptional
object, 24, 181, 184
sequence, 24
full, 24, 181
strong, 183

Fermat surface, 229
flip, 259
flop, 259
Fourier—-Mukai kernel, 113
for abelian varieties, 222
uniqueness of, 121
Fourier—Mukai partner, 114, 286
finiteness of, 215, 286
Fourier—-Mukai transform, 113
adjoints of, 116
equivalence, 159, 161
exact, 114
fully faithful, 154, 159
K-theoretic, 125
kernel of, 113
on Chow groups, 126
on cohomology, 126
product of, 158, 161
functor
(quasi-)inverse, 2
additive, 3
adjoint
left, 5, 6, 9, 11, 15
right, 5, 6, 9, 11, 15

derived
higher, 47
right, 46

dualizing, 87

exact, 5, 14, 37, 43, 45, 46
left, 5, 6, 44, 45, 47, 48, 71
right, 5, 6, 45, 78

faithful, 1

full, 1

fully faithful, 21, 22
via spanning class, 20, 101

isomorphism, 1

linear, 3

morphism, 1

Global Torelli theorem

for Enriques surfaces, 280

for K3 surfaces, 230
Grothendieck group, 124, 292, 293

Index

Grothendieck—Riemann—Roch formula, 127,

232

Grothendieck—Verdier duality, 67, 86, 116

Hilbert scheme, 191

Hirzebruch—Riemann—Roch formula, 127
Hochschild cohomology, 131, 139, 140, 218

Hodge isometry, 220, 230, 234
orientation preserving, 237
Hodge structure, 130, 297
homological dimension
finite, 59
hypercohomology, 71

integral functor

see Fourier—Mukai transform, 113
inverse image, 45, 80, 83
isogeny, 194, 200, 206

degree of, 194

K-equivalence, 150, 287, 291
K3 surface, 228, 272, 276, 293
derived equivalence of, 233

period of, 230
Kéhler cone, 230
Kodaira dimension, 151

numerical, 152

under derived equivalence, 146, 147, 273

under derived equivalence, 137, 273
Kodaira’s lemma, 148
Koszul complex, 180, 250
Kummer surface, 229

Kiinneth formula, 86, 158, 196, 198, 262

line bundle
nef, 151
localization, 36

mapping cone, 33
moduli space
coarse, 241
fine, 243, 282
morphism
of complexes, 28
homotopically equivalent, 31
homotopy, 31
Mukai flop
stratified, 270
Mukai pairing, 132, 172, 267
for K3 surface, 231
Mukai vector, 127, 172, 231
mutation, 184



object

acyclic, 47
injective, 5

enough, 41, 45, 50, 57
invertible, 93
point like, 91
projective, 5

enough, 40, 50
simple, 91

Picard functor, 199
Picard group, 140, 195, 218
Picard number
under derived equivalence, 273
Poincaré bundle, 197
as Fourier—-Mukai kernel, 201
Chern class of, 198
versus Poincaré duality, 204
Poincaré duality, 203, 204
projection formula, 83, 126, 249, 257, 268
projective bundle, 254
pull-back, 6, 45, 80, 86
K-theoretic, 124
on cohomology, 126

quasi-isomorphism (qis), 29

resolution
Cartan—Eilenberg, 56
injective, 39
of sheaf, 63
projective, 39

see-saw principle, 194
Serre duality, 67, 87, 116
Serre functor, 9, 23

for varieties, 67

is exact, 18

sheaf
dual of, 78
flabby, 73

injective, 63, 73
stable, 240

Index

shift functor, 12, 28
slope function, 292
spanning class, 20
ample sequence, 59, 101
for spherical object, 169
of closed points, 69
of line bundles, 59, 69
spectral sequence, 52
Beilinson, 181
Leray, 74
spherical object, 166, 184, 191, 258
A -configuration of, 175
on Calabi—Yau manifold, 170
on curve, 170
spherical twist, 167, 234
cohomological, 171, 172
equivalence, 168
stability condition, 292
stable sheaf, 240
moduli space of, 241
support, 65
of dual, 84
of restriction, 81
surface
canonical model of, 275
elliptic, 276, 282, 284
hyperelliptic, 276
minimal, 274
minimal model of, 274
of general type, 275
rational, 274
ruled, 274

tensor product
of complexes, 79
theorem
of the cube, 194
of the square, 195
Todd class, 127
trace, 77
triangle
distinguished, 36

Yoneda lemma, 2
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